Profile information
View graph of relations

Publications

  1. 2023
  2. Accepted/In press

    A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning

    Mohan, A., Zhang, A. & Lindauer, M., 17 Sept 2023, (Accepted/In press) The 16th European Workshop on Reinforcement Learning (EWRL 2023).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  3. Accepted/In press

    Extended Abstract: AutoRL Hyperparameter Landscapes

    Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A. & Lindauer, M., 15 Sept 2023, (Accepted/In press) The 16th European Workshop on Reinforcement Learning (EWRL 2023).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  4. E-pub ahead of print

    PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning

    Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L. & Hutter, F., Sept 2023, (E-pub ahead of print) Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  5. Published

    Hyperparameters in Reinforcement Learning and How to Tune Them

    Eimer, T., Lindauer, M. & Raileanu, R., 23 Jul 2023, ICML'23: Proceedings of the 40th International Conference on Machine Learning. p. 9104–9149 366

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  6. Published

    Application of machine learning for fleet-based condition monitoring of ball screw drives in machine tools

    Denkena, B., Dittrich, M., Noske, H., Lange, D., Benjamins, C. & Lindauer, M., Jul 2023, In: The international journal of advanced manufacturing technology. 127, 3-4, p. 1143-1164 22 p.

    Research output: Contribution to journalArticleResearchpeer review

  7. E-pub ahead of print

    Contextualize Me – The Case for Context in Reinforcement Learning

    Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F. & Lindauer, M., 5 Jun 2023, (E-pub ahead of print) In: Transactions on Machine Learning Research. 2023, 6

    Research output: Contribution to journalArticleResearchpeer review

  8. Accepted/In press

    Learning Activation Functions for Sparse Neural Networks

    Loni, M., Mohan, A., Asadi, M. & Lindauer, M., 16 May 2023, (Accepted/In press) Second International Conference on Automated Machine Learning.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  9. E-pub ahead of print

    Symbolic Explanations for Hyperparameter Optimization

    Segel, S., Graf, H., Tornede, A., Bischl, B. & Lindauer, M., 16 May 2023, (E-pub ahead of print) AutoML Conference 2023.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  10. E-pub ahead of print

    MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information

    Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F. & Lindauer, M., 18 Apr 2023, (E-pub ahead of print) In: Transactions on Machine Learning Research.

    Research output: Contribution to journalArticleResearchpeer review

  11. Published

    Green-AutoML for Plastic Litter Detection

    Theodorakopoulos, D., Manß, C., Stahl, F. & Lindauer, M., Apr 2023, Proceedings of the ICLR Workshop on Tackling Climate Change with Machine Learning. 7 p.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  12. Published

    POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning

    Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B. & Lindauer, M., Apr 2023, In: Transactions on Machine Learning Research. 2023, 4

    Research output: Contribution to journalArticleResearchpeer review

  13. Published

    Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332).

    Vermetten, D., Krejca, M. S., Lindauer, M., López-Ibáñez, M. & Malan, K. M., 13 Mar 2023, In: Dagstuhl Reports. 13, 8, 25 p.

    Research output: Contribution to journalConference articleResearchpeer review

  14. Published

    Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges

    Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A., Deng, D. & Lindauer, M., 10 Mar 2023, In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 13, 2, 70 p., e1484.

    Research output: Contribution to journalArticleResearchpeer review

  15. E-pub ahead of print

    Automated Machine Learning for Remaining Useful Life Predictions

    Zoeller, M., Mauthe, F., Zeiler, P., Lindauer, M. & Huber, M., 2023, (E-pub ahead of print) Proceedings of the international conference on Systems Science and Engineering, Human-Machine Systems, and Cybernetics (IEEE SMC).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  16. E-pub ahead of print

    Extended Abstract: Contextualize Me -- The Case for Context in Reinforcement Learning

    Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F. & Lindauer, M., 2023, (E-pub ahead of print) The 16th European Workshop on Reinforcement Learning (EWRL 2023).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  17. E-pub ahead of print

    Extended Abstract: Hyperparameters in Reinforcement Learning and How To Tune Them

    Eimer, T., Lindauer, M. & Raileanu, R., 2023, (E-pub ahead of print) The 16th European Workshop on Reinforcement Learning (EWRL 2023).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  18. Accepted/In press

    Self-Adjusting Weighted Expected Improvement for Bayesian Optimization

    Benjamins, C., Raponi, E., Jankovic, A., Doerr, C. & Lindauer, M., 2023, (Accepted/In press) AutoML Conference 2023.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  19. Accepted/In press

    Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization

    Benjamins, C., Raponi, E., Jankovic, A., Doerr, C. & Lindauer, M., 2023, (Accepted/In press) GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference Companion.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  20. 2022
  21. Published

    Automated Dynamic Algorithm Configuration

    Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M. & Hutter, F., Dec 2022, In: Journal of Artificial Intelligence Research. 75, p. 1633-1699 67 p.

    Research output: Contribution to journalArticleResearchpeer review

  22. Published

    Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis

    Benjamins, C., Jankovic, A., Raponi, E., Blom, K. V. D., Lindauer, M. & Doerr, C., 17 Nov 2022.

    Research output: Contribution to conferencePaperResearchpeer review