Zariski K3 surfaces

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Hosei University
View graph of relations

Details

Original languageEnglish
Pages (from-to)869–894
Number of pages26
JournalRevista matemática iberoamericana
Volume36
Issue number3
Early online date12 Nov 2019
Publication statusPublished - 2020

Abstract

We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves.

Keywords

    math.AG, K3 surface, Automorphism, Zariski surface, Abelian surface, Infinitesimal group scheme

ASJC Scopus subject areas

Cite this

Zariski K3 surfaces. / Katsura, Toshiyuki; Schütt, Matthias.
In: Revista matemática iberoamericana, Vol. 36, No. 3, 2020, p. 869–894.

Research output: Contribution to journalArticleResearchpeer review

Katsura T, Schütt M. Zariski K3 surfaces. Revista matemática iberoamericana. 2020;36(3):869–894. Epub 2019 Nov 12. doi: 10.48550/arXiv.1710.08661, 10.4171/rmi/1152
Katsura, Toshiyuki ; Schütt, Matthias. / Zariski K3 surfaces. In: Revista matemática iberoamericana. 2020 ; Vol. 36, No. 3. pp. 869–894.
Download
@article{5fa2bb94c8324334a73cd90de96553e6,
title = "Zariski K3 surfaces",
abstract = "We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves. ",
keywords = "math.AG, K3 surface, Automorphism, Zariski surface, Abelian surface, Infinitesimal group scheme",
author = "Toshiyuki Katsura and Matthias Sch{\"u}tt",
year = "2020",
doi = "10.48550/arXiv.1710.08661",
language = "English",
volume = "36",
pages = "869–894",
journal = "Revista matem{\'a}tica iberoamericana",
issn = "0213-2230",
publisher = "Universidad Autonoma de Madrid",
number = "3",

}

Download

TY - JOUR

T1 - Zariski K3 surfaces

AU - Katsura, Toshiyuki

AU - Schütt, Matthias

PY - 2020

Y1 - 2020

N2 - We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves.

AB - We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves.

KW - math.AG

KW - K3 surface

KW - Automorphism

KW - Zariski surface

KW - Abelian surface

KW - Infinitesimal group scheme

UR - http://www.scopus.com/inward/record.url?scp=85090777325&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1710.08661

DO - 10.48550/arXiv.1710.08661

M3 - Article

VL - 36

SP - 869

EP - 894

JO - Revista matemática iberoamericana

JF - Revista matemática iberoamericana

SN - 0213-2230

IS - 3

ER -

By the same author(s)