Details
Original language | English |
---|---|
Pages (from-to) | 869–894 |
Number of pages | 26 |
Journal | Revista matemática iberoamericana |
Volume | 36 |
Issue number | 3 |
Early online date | 12 Nov 2019 |
Publication status | Published - 2020 |
Abstract
We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves.
Keywords
- math.AG, K3 surface, Automorphism, Zariski surface, Abelian surface, Infinitesimal group scheme
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Revista matemática iberoamericana, Vol. 36, No. 3, 2020, p. 869–894.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Zariski K3 surfaces
AU - Katsura, Toshiyuki
AU - Schütt, Matthias
PY - 2020
Y1 - 2020
N2 - We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves.
AB - We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α p, Kummer surfaces, and automorphisms of hyperelliptic curves.
KW - math.AG
KW - K3 surface
KW - Automorphism
KW - Zariski surface
KW - Abelian surface
KW - Infinitesimal group scheme
UR - http://www.scopus.com/inward/record.url?scp=85090777325&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1710.08661
DO - 10.48550/arXiv.1710.08661
M3 - Article
VL - 36
SP - 869
EP - 894
JO - Revista matemática iberoamericana
JF - Revista matemática iberoamericana
SN - 0213-2230
IS - 3
ER -