Details
Original language | English |
---|---|
Article number | e0252085 |
Journal | PLOS ONE |
Volume | 16 |
Issue number | 5 May |
Publication status | Published - 20 May 2021 |
Abstract
Neck shrivel is a quality disorder of European plum (Prunus × domestica L.). It has been suggested that backflow in the xylem (from fruit to tree) could contribute to the incidence of neck shrivel in plum. The objective was to quantify rates of xylem, phloem and of transpiration flow in developing plum fruit. Using linear variable displacement transducers, changes in fruit volume were recorded 1) in un-treated control fruit, 2) in fruit that had their pedicels steam-girdled (phloem interrupted, xylem still functional) and 3) in detached fruit, left in the canopy (xylem and phloem interrupted). Xylem flow rates were occasionally negative in the early hours after sunrise, indicating xylem sap backflow from fruit to tree. Later in the day, xylem flows were positive and generally higher in daytime and lower at night. Significant phloem flow occurred in daytime, but ceased after sunset. During stage II (but not during stage III), the rates of xylem flow and transpiration were variable and closely related to atmospheric vapor pressure deficit. The relative contribution of xylem inflow to total sap inflow averaged 79% during stage II, decreasing to 25% during stage III. In contrast, phloem sap inflow averaged 21% of total sap inflow during stage II, increasing to 75% in stage III. Our results indicate that xylem backflow occurs early in the day. However, xylem backflow rates are considered too low to significantly contribute to the incidence of neck shrivel.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: PLOS ONE, Vol. 16, No. 5 May, e0252085, 20.05.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Xylem, phloem and transpiration flows in developing European plums
AU - Winkler, Andreas
AU - Knoche, Moritz
N1 - Funding: This study was supported by a grant from the Deutsche Forschungsgemeinschaft (KN 402/19-1). The publication of this article was funded by the Open Access fund of Leibniz Universität Hannover. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2021/5/20
Y1 - 2021/5/20
N2 - Neck shrivel is a quality disorder of European plum (Prunus × domestica L.). It has been suggested that backflow in the xylem (from fruit to tree) could contribute to the incidence of neck shrivel in plum. The objective was to quantify rates of xylem, phloem and of transpiration flow in developing plum fruit. Using linear variable displacement transducers, changes in fruit volume were recorded 1) in un-treated control fruit, 2) in fruit that had their pedicels steam-girdled (phloem interrupted, xylem still functional) and 3) in detached fruit, left in the canopy (xylem and phloem interrupted). Xylem flow rates were occasionally negative in the early hours after sunrise, indicating xylem sap backflow from fruit to tree. Later in the day, xylem flows were positive and generally higher in daytime and lower at night. Significant phloem flow occurred in daytime, but ceased after sunset. During stage II (but not during stage III), the rates of xylem flow and transpiration were variable and closely related to atmospheric vapor pressure deficit. The relative contribution of xylem inflow to total sap inflow averaged 79% during stage II, decreasing to 25% during stage III. In contrast, phloem sap inflow averaged 21% of total sap inflow during stage II, increasing to 75% in stage III. Our results indicate that xylem backflow occurs early in the day. However, xylem backflow rates are considered too low to significantly contribute to the incidence of neck shrivel.
AB - Neck shrivel is a quality disorder of European plum (Prunus × domestica L.). It has been suggested that backflow in the xylem (from fruit to tree) could contribute to the incidence of neck shrivel in plum. The objective was to quantify rates of xylem, phloem and of transpiration flow in developing plum fruit. Using linear variable displacement transducers, changes in fruit volume were recorded 1) in un-treated control fruit, 2) in fruit that had their pedicels steam-girdled (phloem interrupted, xylem still functional) and 3) in detached fruit, left in the canopy (xylem and phloem interrupted). Xylem flow rates were occasionally negative in the early hours after sunrise, indicating xylem sap backflow from fruit to tree. Later in the day, xylem flows were positive and generally higher in daytime and lower at night. Significant phloem flow occurred in daytime, but ceased after sunset. During stage II (but not during stage III), the rates of xylem flow and transpiration were variable and closely related to atmospheric vapor pressure deficit. The relative contribution of xylem inflow to total sap inflow averaged 79% during stage II, decreasing to 25% during stage III. In contrast, phloem sap inflow averaged 21% of total sap inflow during stage II, increasing to 75% in stage III. Our results indicate that xylem backflow occurs early in the day. However, xylem backflow rates are considered too low to significantly contribute to the incidence of neck shrivel.
UR - http://www.scopus.com/inward/record.url?scp=85106392239&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0252085
DO - 10.1371/journal.pone.0252085
M3 - Article
C2 - 34015019
AN - SCOPUS:85106392239
VL - 16
JO - PLOS ONE
JF - PLOS ONE
SN - 1932-6203
IS - 5 May
M1 - e0252085
ER -