Details
Original language | English |
---|---|
Pages (from-to) | 297-308 |
Number of pages | 12 |
Journal | Journal für die reine und angewandte Mathematik |
Volume | 2018 |
Issue number | 739 |
Early online date | 14 Jan 2016 |
Publication status | Published - 1 Jun 2018 |
Abstract
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal für die reine und angewandte Mathematik, Vol. 2018, No. 739, 01.06.2018, p. 297-308.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Xiao's conjecture for general fibred surfaces
AU - Barja, Miguel Ángel
AU - González-Alonso, Víctor
AU - Naranjo, Juan Carlos
N1 - Funding information: During the development of this work, the first and second authors were supported by the Spanish ‘Ministe-rio de Economía y Competitividad’ (project MTM2012-38122-C03-01/FEDER) and the ‘Generalitat de Catalunya’ (project 2009-SGR-1284). The third author was supported by the Spanish ‘Ministerio de Economía y Compet-itividad’ (project MTM2012-38122-C03-02). The second author was also supported by the Spanish ‘Ministerio de Educación’ (grant FPU-AP2008-01849) and by the ‘European Research Council’ (StG 279723 ‘Arithmetic of algebraic surfaces’, SURFARI).
PY - 2018/6/1
Y1 - 2018/6/1
N2 - We prove that the genus g, the relative irregularity qf and the Clifford index cf of a non-isotrivial fibration f satisfy the inequality qf ≤ g - cf. This gives in particular a proof of Xiao's conjecture for fibrations whose general fibres have maximal Clifford index.
AB - We prove that the genus g, the relative irregularity qf and the Clifford index cf of a non-isotrivial fibration f satisfy the inequality qf ≤ g - cf. This gives in particular a proof of Xiao's conjecture for fibrations whose general fibres have maximal Clifford index.
UR - http://www.scopus.com/inward/record.url?scp=85049295119&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1401.7502
DO - 10.48550/arXiv.1401.7502
M3 - Article
AN - SCOPUS:85049295119
VL - 2018
SP - 297
EP - 308
JO - Journal für die reine und angewandte Mathematik
JF - Journal für die reine und angewandte Mathematik
SN - 0075-4102
IS - 739
ER -