Details
Original language | English |
---|---|
Pages (from-to) | 677-688 |
Number of pages | 12 |
Journal | Annals of botany |
Volume | 114 |
Issue number | 4 |
Publication status | Published - 6 Jun 2014 |
Abstract
Background and Aims Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. Methods A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. Key Results In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %. Conclusions Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.
Keywords
- canopy photosynthesis, cucumber, Cucumis sativus, diffuse light, Functional-structural plant model, FvCB model, GPU, graphics processing unit, GroIMP, photosynthetic limitations, quantitative limitation analysis
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Annals of botany, Vol. 114, No. 4, 06.06.2014, p. 677-688.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?
AU - Chen, Tsu Wei
AU - Henke, Michael
AU - De Visser, Pieter H.B.
AU - Buck-Sorlin, Gerhard
AU - Wiechers, Dirk
AU - Kahlen, Katrin
AU - Stützel, Hartmut
PY - 2014/6/6
Y1 - 2014/6/6
N2 - Background and Aims Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. Methods A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. Key Results In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %. Conclusions Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.
AB - Background and Aims Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. Methods A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. Key Results In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %. Conclusions Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.
KW - canopy photosynthesis
KW - cucumber
KW - Cucumis sativus
KW - diffuse light
KW - Functional-structural plant model
KW - FvCB model
KW - GPU
KW - graphics processing unit
KW - GroIMP
KW - photosynthetic limitations
KW - quantitative limitation analysis
UR - http://www.scopus.com/inward/record.url?scp=84910662384&partnerID=8YFLogxK
U2 - 10.1093/aob/mcu100
DO - 10.1093/aob/mcu100
M3 - Article
C2 - 24907313
AN - SCOPUS:84910662384
VL - 114
SP - 677
EP - 688
JO - Annals of botany
JF - Annals of botany
SN - 0305-7364
IS - 4
ER -