Virus-like particle production with yeast: Ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Heinrich Lünsdorf
  • Chandrasekhar Gurramkonda
  • Ahmad Adnan
  • Navin Khanna
  • Ursula Rinas

Research Organisations

External Research Organisations

  • Helmholtz Centre for Infection Research (HZI)
  • International Centre for Genetic Engineering and Biotechnology
  • Government College University Lahore
View graph of relations

Details

Original languageEnglish
Article number48
JournalMicrobial cell factories
Volume10
Publication statusPublished - 26 Jun 2011

Abstract

Background: A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification.Results: High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell.Conclusions: It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Virus-like particle production with yeast: Ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen. / Lünsdorf, Heinrich; Gurramkonda, Chandrasekhar; Adnan, Ahmad et al.
In: Microbial cell factories, Vol. 10, 48, 26.06.2011.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{1354e8fb5d9943edb423708179a1e108,
title = "Virus-like particle production with yeast: Ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen",
abstract = "Background: A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification.Results: High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell.Conclusions: It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.",
author = "Heinrich L{\"u}nsdorf and Chandrasekhar Gurramkonda and Ahmad Adnan and Navin Khanna and Ursula Rinas",
note = "Funding Information: This work was supported by institutional core funds of the Helmholtz Centre for Infection Research and by an Indo-German program funded by DBT (India) and BMBF (Germany). Ahmad Adnan wishes to express his gratitude to the Higher Education Commission (HEC) of Pakistan for a post-doctoral fellowship. The skilful work of Inge Kristen on sample preparation for electron microscopy is gratefully acknowledged. The authors also wish to thank Thomas Ebensen for support during VLP purification by ultracentrifugation and also Andrew Perreth and Michael Sch{\"o}n for help during the first steps of down-stream processing.",
year = "2011",
month = jun,
day = "26",
doi = "10.1186/1475-2859-10-48",
language = "English",
volume = "10",
journal = "Microbial cell factories",
issn = "1475-2859",
publisher = "BioMed Central Ltd.",

}

Download

TY - JOUR

T1 - Virus-like particle production with yeast

T2 - Ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen

AU - Lünsdorf, Heinrich

AU - Gurramkonda, Chandrasekhar

AU - Adnan, Ahmad

AU - Khanna, Navin

AU - Rinas, Ursula

N1 - Funding Information: This work was supported by institutional core funds of the Helmholtz Centre for Infection Research and by an Indo-German program funded by DBT (India) and BMBF (Germany). Ahmad Adnan wishes to express his gratitude to the Higher Education Commission (HEC) of Pakistan for a post-doctoral fellowship. The skilful work of Inge Kristen on sample preparation for electron microscopy is gratefully acknowledged. The authors also wish to thank Thomas Ebensen for support during VLP purification by ultracentrifugation and also Andrew Perreth and Michael Schön for help during the first steps of down-stream processing.

PY - 2011/6/26

Y1 - 2011/6/26

N2 - Background: A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification.Results: High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell.Conclusions: It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.

AB - Background: A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification.Results: High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell.Conclusions: It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.

UR - http://www.scopus.com/inward/record.url?scp=79959414321&partnerID=8YFLogxK

U2 - 10.1186/1475-2859-10-48

DO - 10.1186/1475-2859-10-48

M3 - Article

C2 - 21703024

AN - SCOPUS:79959414321

VL - 10

JO - Microbial cell factories

JF - Microbial cell factories

SN - 1475-2859

M1 - 48

ER -