Details
Original language | English |
---|---|
Article number | 164115 |
Journal | Journal of Chemical Physics |
Volume | 141 |
Issue number | 16 |
Publication status | Published - 28 Oct 2014 |
Abstract
The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called "independent mode, displaced harmonic oscillator" (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
- Chemistry(all)
- Physical and Theoretical Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Chemical Physics, Vol. 141, No. 16, 164115, 28.10.2014.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations
AU - Barton, Dennis
AU - König, C.
AU - Neugebauer, Johannes
N1 - Publisher Copyright: © 2014 AIP Publishing LLC. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2014/10/28
Y1 - 2014/10/28
N2 - The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called "independent mode, displaced harmonic oscillator" (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.
AB - The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called "independent mode, displaced harmonic oscillator" (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.
UR - http://www.scopus.com/inward/record.url?scp=84908406835&partnerID=8YFLogxK
U2 - 10.1063/1.4898665
DO - 10.1063/1.4898665
M3 - Article
VL - 141
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
IS - 16
M1 - 164115
ER -