Details
Original language | English |
---|---|
Title of host publication | Proceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017 |
Editors | Dermot Brabazon, Inam Ul Ahad, Sumsun Naher |
ISBN (electronic) | 9780735415805 |
Publication status | Published - 16 Oct 2017 |
Event | 20th International ESAFORM Conference on Material Forming, ESAFORM 2017 - Dublin, Ireland Duration: 26 Apr 2017 → 28 Apr 2017 |
Publication series
Name | AIP Conference Proceedings |
---|---|
Volume | 1896 |
ISSN (Print) | 0094-243X |
ISSN (electronic) | 1551-7616 |
Abstract
In order to meet requirements by automotive industry like decreasing the CO2 emissions, which reflects in reducing vehicles mass in the car body, the chassis and the powertrain, the continuous innovation and further development of existing production processes are required. In sheet metal forming processes the process limits and components characteristics are defined through the process specific loads. While exceeding the load limits, a failure in the material occurs, which can be avoided by additional force transmission activated in the deep drawing process before the process limit is achieved. This contribution deals with experimental investigations of a forming process with additional force transmission regarding the extension of the process limits. Based on FEA a tool system is designed and developed by IFUM. For this purpose, the steel material HCT600 is analyzed numerically. Within the experimental investigations, the deep drawing processes, with and without the additional force transmission are carried out. Here, a comparison of the produced rectangle cups is done. Subsequently, the identical deep drawing processes are investigated numerically. Thereby, the values of the punch reaction force and displacement are estimated and compared with experimental results. Thus, the validation of material model is successfully carried out on process scale. For further quantitative verification of the FEA results the experimental determined geometry of the rectangular cup is measured optically with ATOS system of the company GOM mbH and digitally compared with external software Geomagic®QualifyTM. The goal of this paper is the verification of the transferability of the FEA model for a conventional deep drawing process to a deep drawing process with additional force transmission with a counter punch.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Proceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017. ed. / Dermot Brabazon; Inam Ul Ahad; Sumsun Naher. 2017. 080024 (AIP Conference Proceedings; Vol. 1896).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Validation of the FEA of a Deep Drawing Process with Additional Force Transmission
AU - Behrens, B. A.
AU - Bouguecha, A.
AU - Bonk, C.
AU - Grbic, N.
AU - Vucetic, M.
N1 - Funding information: transmission”, which is kindly supported by the German Research Foundation (DFG). The authors thank the DFG for project foundation.
PY - 2017/10/16
Y1 - 2017/10/16
N2 - In order to meet requirements by automotive industry like decreasing the CO2 emissions, which reflects in reducing vehicles mass in the car body, the chassis and the powertrain, the continuous innovation and further development of existing production processes are required. In sheet metal forming processes the process limits and components characteristics are defined through the process specific loads. While exceeding the load limits, a failure in the material occurs, which can be avoided by additional force transmission activated in the deep drawing process before the process limit is achieved. This contribution deals with experimental investigations of a forming process with additional force transmission regarding the extension of the process limits. Based on FEA a tool system is designed and developed by IFUM. For this purpose, the steel material HCT600 is analyzed numerically. Within the experimental investigations, the deep drawing processes, with and without the additional force transmission are carried out. Here, a comparison of the produced rectangle cups is done. Subsequently, the identical deep drawing processes are investigated numerically. Thereby, the values of the punch reaction force and displacement are estimated and compared with experimental results. Thus, the validation of material model is successfully carried out on process scale. For further quantitative verification of the FEA results the experimental determined geometry of the rectangular cup is measured optically with ATOS system of the company GOM mbH and digitally compared with external software Geomagic®QualifyTM. The goal of this paper is the verification of the transferability of the FEA model for a conventional deep drawing process to a deep drawing process with additional force transmission with a counter punch.
AB - In order to meet requirements by automotive industry like decreasing the CO2 emissions, which reflects in reducing vehicles mass in the car body, the chassis and the powertrain, the continuous innovation and further development of existing production processes are required. In sheet metal forming processes the process limits and components characteristics are defined through the process specific loads. While exceeding the load limits, a failure in the material occurs, which can be avoided by additional force transmission activated in the deep drawing process before the process limit is achieved. This contribution deals with experimental investigations of a forming process with additional force transmission regarding the extension of the process limits. Based on FEA a tool system is designed and developed by IFUM. For this purpose, the steel material HCT600 is analyzed numerically. Within the experimental investigations, the deep drawing processes, with and without the additional force transmission are carried out. Here, a comparison of the produced rectangle cups is done. Subsequently, the identical deep drawing processes are investigated numerically. Thereby, the values of the punch reaction force and displacement are estimated and compared with experimental results. Thus, the validation of material model is successfully carried out on process scale. For further quantitative verification of the FEA results the experimental determined geometry of the rectangular cup is measured optically with ATOS system of the company GOM mbH and digitally compared with external software Geomagic®QualifyTM. The goal of this paper is the verification of the transferability of the FEA model for a conventional deep drawing process to a deep drawing process with additional force transmission with a counter punch.
UR - http://www.scopus.com/inward/record.url?scp=85037689815&partnerID=8YFLogxK
U2 - 10.1063/1.5008104
DO - 10.1063/1.5008104
M3 - Conference contribution
AN - SCOPUS:85037689815
T3 - AIP Conference Proceedings
BT - Proceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017
A2 - Brabazon, Dermot
A2 - Ul Ahad, Inam
A2 - Naher, Sumsun
T2 - 20th International ESAFORM Conference on Material Forming, ESAFORM 2017
Y2 - 26 April 2017 through 28 April 2017
ER -