Details
Original language | English |
---|---|
Article number | 1081850 |
Journal | Frontiers in Water |
Volume | 5 |
Publication status | Published - 15 Jun 2023 |
Abstract
Urban areas are mostly highly sealed spaces, which often leads to large proportions of surface runoff. At the same time, heavy rainfall events are projected to increase in frequency and intensity with anthropogenic climate change. Consequently, higher risks and damages from pluvial flooding are expected. The analysis of Flood Regulating Ecosystem Services (FRES) can help to determine the benefits from nature to people by reducing surface runoff and runoff peaks. However, urban FRES are rarely studied for heavy rainfall events under changing climate conditions. Therefore, we first estimate the functionality of current urban FRES-supply and demand under changing climate conditions. Second, we identify the effects of Nature-based Solutions (NbS) on FRES-supply and demand and their potential future functionality and benefits concerning more intensive rainfall events. A district of the city of Rostock in northeastern Germany serves as the case study area. In addition to the reference conditions based on the current land use, we investigate two potential NbS: (1) increasing the number of trees; and (2) unsealing and soil improvement. Both NbS and a combination of both are applied for three heavy rainfall scenarios. In addition to a reference scenario, two future scenarios were developed to investigate the FRES functionality, based on 21 and 28% more intense rainfall. While the potential FRES-demand was held constant, we assessed the FRES-supply and actual demand for all scenario combinations, using the hydrological model LEAFlood. The comparison between the actual demand and supply indicates the changes in FRES-supply surplus and unmet demand increase. Existing land use structures reached a FRES capacity and cannot buffer more intense rainfall events. Whereas, the NbS serve FRES benefits by increasing the supply and reducing the actual demand. Using FRES indicators, based on hydrological models to estimate future functionality under changing climate conditions and the benefits of NbS, can serve as an analysis and decision-support tool for decision-makers to reduce future urban flood risk.
Keywords
- cities, climate adaptation, ecosystem services supply and demand, extreme rainfall, hydrological modeling, mismatch analysis, scenarios
ASJC Scopus subject areas
- Environmental Science(all)
- Water Science and Technology
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Frontiers in Water, Vol. 5, 1081850, 15.06.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Urban flood regulating ecosystem services under climate change
T2 - how can Nature-based Solutions contribute?
AU - Wübbelmann, Thea
AU - Förster, Kristian
AU - Bouwer, Laurens M.
AU - Dworczyk, Claudia
AU - Bender, Steffen
AU - Burkhard, Benjamin
N1 - Funding Information: This work has received support from the Helmholtz Association under the Changing Earth research program.
PY - 2023/6/15
Y1 - 2023/6/15
N2 - Urban areas are mostly highly sealed spaces, which often leads to large proportions of surface runoff. At the same time, heavy rainfall events are projected to increase in frequency and intensity with anthropogenic climate change. Consequently, higher risks and damages from pluvial flooding are expected. The analysis of Flood Regulating Ecosystem Services (FRES) can help to determine the benefits from nature to people by reducing surface runoff and runoff peaks. However, urban FRES are rarely studied for heavy rainfall events under changing climate conditions. Therefore, we first estimate the functionality of current urban FRES-supply and demand under changing climate conditions. Second, we identify the effects of Nature-based Solutions (NbS) on FRES-supply and demand and their potential future functionality and benefits concerning more intensive rainfall events. A district of the city of Rostock in northeastern Germany serves as the case study area. In addition to the reference conditions based on the current land use, we investigate two potential NbS: (1) increasing the number of trees; and (2) unsealing and soil improvement. Both NbS and a combination of both are applied for three heavy rainfall scenarios. In addition to a reference scenario, two future scenarios were developed to investigate the FRES functionality, based on 21 and 28% more intense rainfall. While the potential FRES-demand was held constant, we assessed the FRES-supply and actual demand for all scenario combinations, using the hydrological model LEAFlood. The comparison between the actual demand and supply indicates the changes in FRES-supply surplus and unmet demand increase. Existing land use structures reached a FRES capacity and cannot buffer more intense rainfall events. Whereas, the NbS serve FRES benefits by increasing the supply and reducing the actual demand. Using FRES indicators, based on hydrological models to estimate future functionality under changing climate conditions and the benefits of NbS, can serve as an analysis and decision-support tool for decision-makers to reduce future urban flood risk.
AB - Urban areas are mostly highly sealed spaces, which often leads to large proportions of surface runoff. At the same time, heavy rainfall events are projected to increase in frequency and intensity with anthropogenic climate change. Consequently, higher risks and damages from pluvial flooding are expected. The analysis of Flood Regulating Ecosystem Services (FRES) can help to determine the benefits from nature to people by reducing surface runoff and runoff peaks. However, urban FRES are rarely studied for heavy rainfall events under changing climate conditions. Therefore, we first estimate the functionality of current urban FRES-supply and demand under changing climate conditions. Second, we identify the effects of Nature-based Solutions (NbS) on FRES-supply and demand and their potential future functionality and benefits concerning more intensive rainfall events. A district of the city of Rostock in northeastern Germany serves as the case study area. In addition to the reference conditions based on the current land use, we investigate two potential NbS: (1) increasing the number of trees; and (2) unsealing and soil improvement. Both NbS and a combination of both are applied for three heavy rainfall scenarios. In addition to a reference scenario, two future scenarios were developed to investigate the FRES functionality, based on 21 and 28% more intense rainfall. While the potential FRES-demand was held constant, we assessed the FRES-supply and actual demand for all scenario combinations, using the hydrological model LEAFlood. The comparison between the actual demand and supply indicates the changes in FRES-supply surplus and unmet demand increase. Existing land use structures reached a FRES capacity and cannot buffer more intense rainfall events. Whereas, the NbS serve FRES benefits by increasing the supply and reducing the actual demand. Using FRES indicators, based on hydrological models to estimate future functionality under changing climate conditions and the benefits of NbS, can serve as an analysis and decision-support tool for decision-makers to reduce future urban flood risk.
KW - cities
KW - climate adaptation
KW - ecosystem services supply and demand
KW - extreme rainfall
KW - hydrological modeling
KW - mismatch analysis
KW - scenarios
UR - http://www.scopus.com/inward/record.url?scp=85164407810&partnerID=8YFLogxK
U2 - 10.3389/frwa.2023.1081850
DO - 10.3389/frwa.2023.1081850
M3 - Article
AN - SCOPUS:85164407810
VL - 5
JO - Frontiers in Water
JF - Frontiers in Water
M1 - 1081850
ER -