Upper-flow regime bedforms in a subglacial triangular-shaped landform (murtoo), Late Pleistocene, SW Finland: Implications for flow dynamics and sediment transport in (semi-)distributed subglacial meltwater drainage systems

Research output: Contribution to journalArticleResearchpeer review

Authors

  • J. Hovikoski
  • J. Mäkinen
  • J. Winsemann
  • S. Soini
  • K. Kajuutti
  • A. Hepburn
  • A. E.K. Ojala

Research Organisations

External Research Organisations

  • Geological Survey of Finland
  • University of Turku
  • European Space Astronomy Centre
View graph of relations

Details

Original languageEnglish
Article number106448
JournalSedimentary geology
Volume454
Early online date8 Jun 2023
Publication statusPublished - Aug 2023

Abstract

We know less about subglacial meltwater flow properties in distributed inefficient and semi-efficient systems in comparison to those of ice marginal eskers and proglacial environments. While previous studies have indicated the overall common presence of upper-flow-regime (UFR) bedforms in glacigenic settings, facies expressions of subglacial meltwater flows remain poorly documented. Three ca. 3 m deep and up to 70 m long trenches excavated across a triangle-shaped subglacial landform called a murtoo in a Lateglacial to Holocene meltwater route in SW Finland provide a detailed window into sedimentary structures presumably formed ca. 40–50 km away from the coeval subaqueous margin of the Fennoscandian Ice Sheet (FIS). The aim of this paper is to document small-scale bedforms, which formed subglacially by meltwater flow and to characterize the proximal and central parts of the studied murtoo during its early evolutionary phase. We defined seven main facies types that characterize the depositional processes of the unit. Overall, the studied deposits reflect increasing meltwater delivery through time and are characterized by abrupt lateral changes in sedimentary structures and grain size. While the initial deposits are dominated by massive and horizontally laminated silt with sand lenses interpreted as lower-flow-regime deposits, the latter sediments are characterized by sinusoidal stratification, sigmoidal cross-stratification and scours with backsets or chaotic fill interpreted as deposits of antidunes, humpback dunes, chutes-and-pools and cyclic steps of the upper-flow regime. The upper-flow-regime bedforms developed on a 1 m high and 15 m long bed slope and are associated with the formation of a short-lived enlarged water-filled cavity or pond, where supercritical density flows allowed for the deposition of upper-flow regime bedforms. The final coarse-grained murtoo head-bar development, characterized by planar-cross stratified gravel and pebbly sand, indicates avalanche processes that were controlled by grain size. Our results confirm that the core of the murtoo is depositional and meltwater processes played a key role in its deposition. Despite the subglacial setting with a subaqueous ice-sheet margin, the meltwater flow was not permanently characterized by pipe-flow conditions. Overall, the findings contribute to the understanding of semi-distributed subglacial meltwater systems during the retreat of a continental ice sheet (FIS) in a rapidly warming climate.

Keywords

    Antidune, Chutes-and-pools, Cyclic step, Humpback dune, Lower flow regime, Meltwater route, Murtoo, Subglacial, Upper flow regime

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Download
@article{4608523814704173b80d458dc3df0121,
title = "Upper-flow regime bedforms in a subglacial triangular-shaped landform (murtoo), Late Pleistocene, SW Finland: Implications for flow dynamics and sediment transport in (semi-)distributed subglacial meltwater drainage systems",
abstract = "We know less about subglacial meltwater flow properties in distributed inefficient and semi-efficient systems in comparison to those of ice marginal eskers and proglacial environments. While previous studies have indicated the overall common presence of upper-flow-regime (UFR) bedforms in glacigenic settings, facies expressions of subglacial meltwater flows remain poorly documented. Three ca. 3 m deep and up to 70 m long trenches excavated across a triangle-shaped subglacial landform called a murtoo in a Lateglacial to Holocene meltwater route in SW Finland provide a detailed window into sedimentary structures presumably formed ca. 40–50 km away from the coeval subaqueous margin of the Fennoscandian Ice Sheet (FIS). The aim of this paper is to document small-scale bedforms, which formed subglacially by meltwater flow and to characterize the proximal and central parts of the studied murtoo during its early evolutionary phase. We defined seven main facies types that characterize the depositional processes of the unit. Overall, the studied deposits reflect increasing meltwater delivery through time and are characterized by abrupt lateral changes in sedimentary structures and grain size. While the initial deposits are dominated by massive and horizontally laminated silt with sand lenses interpreted as lower-flow-regime deposits, the latter sediments are characterized by sinusoidal stratification, sigmoidal cross-stratification and scours with backsets or chaotic fill interpreted as deposits of antidunes, humpback dunes, chutes-and-pools and cyclic steps of the upper-flow regime. The upper-flow-regime bedforms developed on a 1 m high and 15 m long bed slope and are associated with the formation of a short-lived enlarged water-filled cavity or pond, where supercritical density flows allowed for the deposition of upper-flow regime bedforms. The final coarse-grained murtoo head-bar development, characterized by planar-cross stratified gravel and pebbly sand, indicates avalanche processes that were controlled by grain size. Our results confirm that the core of the murtoo is depositional and meltwater processes played a key role in its deposition. Despite the subglacial setting with a subaqueous ice-sheet margin, the meltwater flow was not permanently characterized by pipe-flow conditions. Overall, the findings contribute to the understanding of semi-distributed subglacial meltwater systems during the retreat of a continental ice sheet (FIS) in a rapidly warming climate.",
keywords = "Antidune, Chutes-and-pools, Cyclic step, Humpback dune, Lower flow regime, Meltwater route, Murtoo, Subglacial, Upper flow regime",
author = "J. Hovikoski and J. M{\"a}kinen and J. Winsemann and S. Soini and K. Kajuutti and A. Hepburn and Ojala, {A. E.K.}",
note = "Funding Information: This work is part of the RewarD project (MUST consortium), funded by the Academy of Finland (grant numbers 322243 /Joni M{\"a}kinen, University of Turku and 322252 /Antti Ojala, University of Turku). We are grateful for Giorgio Basilici and an anonymous reviewer for constructive and insightful comments that improved paper.",
year = "2023",
month = aug,
doi = "10.1016/j.sedgeo.2023.106448",
language = "English",
volume = "454",
journal = "Sedimentary geology",
issn = "0037-0738",
publisher = "Elsevier",

}

Download

TY - JOUR

T1 - Upper-flow regime bedforms in a subglacial triangular-shaped landform (murtoo), Late Pleistocene, SW Finland

T2 - Implications for flow dynamics and sediment transport in (semi-)distributed subglacial meltwater drainage systems

AU - Hovikoski, J.

AU - Mäkinen, J.

AU - Winsemann, J.

AU - Soini, S.

AU - Kajuutti, K.

AU - Hepburn, A.

AU - Ojala, A. E.K.

N1 - Funding Information: This work is part of the RewarD project (MUST consortium), funded by the Academy of Finland (grant numbers 322243 /Joni Mäkinen, University of Turku and 322252 /Antti Ojala, University of Turku). We are grateful for Giorgio Basilici and an anonymous reviewer for constructive and insightful comments that improved paper.

PY - 2023/8

Y1 - 2023/8

N2 - We know less about subglacial meltwater flow properties in distributed inefficient and semi-efficient systems in comparison to those of ice marginal eskers and proglacial environments. While previous studies have indicated the overall common presence of upper-flow-regime (UFR) bedforms in glacigenic settings, facies expressions of subglacial meltwater flows remain poorly documented. Three ca. 3 m deep and up to 70 m long trenches excavated across a triangle-shaped subglacial landform called a murtoo in a Lateglacial to Holocene meltwater route in SW Finland provide a detailed window into sedimentary structures presumably formed ca. 40–50 km away from the coeval subaqueous margin of the Fennoscandian Ice Sheet (FIS). The aim of this paper is to document small-scale bedforms, which formed subglacially by meltwater flow and to characterize the proximal and central parts of the studied murtoo during its early evolutionary phase. We defined seven main facies types that characterize the depositional processes of the unit. Overall, the studied deposits reflect increasing meltwater delivery through time and are characterized by abrupt lateral changes in sedimentary structures and grain size. While the initial deposits are dominated by massive and horizontally laminated silt with sand lenses interpreted as lower-flow-regime deposits, the latter sediments are characterized by sinusoidal stratification, sigmoidal cross-stratification and scours with backsets or chaotic fill interpreted as deposits of antidunes, humpback dunes, chutes-and-pools and cyclic steps of the upper-flow regime. The upper-flow-regime bedforms developed on a 1 m high and 15 m long bed slope and are associated with the formation of a short-lived enlarged water-filled cavity or pond, where supercritical density flows allowed for the deposition of upper-flow regime bedforms. The final coarse-grained murtoo head-bar development, characterized by planar-cross stratified gravel and pebbly sand, indicates avalanche processes that were controlled by grain size. Our results confirm that the core of the murtoo is depositional and meltwater processes played a key role in its deposition. Despite the subglacial setting with a subaqueous ice-sheet margin, the meltwater flow was not permanently characterized by pipe-flow conditions. Overall, the findings contribute to the understanding of semi-distributed subglacial meltwater systems during the retreat of a continental ice sheet (FIS) in a rapidly warming climate.

AB - We know less about subglacial meltwater flow properties in distributed inefficient and semi-efficient systems in comparison to those of ice marginal eskers and proglacial environments. While previous studies have indicated the overall common presence of upper-flow-regime (UFR) bedforms in glacigenic settings, facies expressions of subglacial meltwater flows remain poorly documented. Three ca. 3 m deep and up to 70 m long trenches excavated across a triangle-shaped subglacial landform called a murtoo in a Lateglacial to Holocene meltwater route in SW Finland provide a detailed window into sedimentary structures presumably formed ca. 40–50 km away from the coeval subaqueous margin of the Fennoscandian Ice Sheet (FIS). The aim of this paper is to document small-scale bedforms, which formed subglacially by meltwater flow and to characterize the proximal and central parts of the studied murtoo during its early evolutionary phase. We defined seven main facies types that characterize the depositional processes of the unit. Overall, the studied deposits reflect increasing meltwater delivery through time and are characterized by abrupt lateral changes in sedimentary structures and grain size. While the initial deposits are dominated by massive and horizontally laminated silt with sand lenses interpreted as lower-flow-regime deposits, the latter sediments are characterized by sinusoidal stratification, sigmoidal cross-stratification and scours with backsets or chaotic fill interpreted as deposits of antidunes, humpback dunes, chutes-and-pools and cyclic steps of the upper-flow regime. The upper-flow-regime bedforms developed on a 1 m high and 15 m long bed slope and are associated with the formation of a short-lived enlarged water-filled cavity or pond, where supercritical density flows allowed for the deposition of upper-flow regime bedforms. The final coarse-grained murtoo head-bar development, characterized by planar-cross stratified gravel and pebbly sand, indicates avalanche processes that were controlled by grain size. Our results confirm that the core of the murtoo is depositional and meltwater processes played a key role in its deposition. Despite the subglacial setting with a subaqueous ice-sheet margin, the meltwater flow was not permanently characterized by pipe-flow conditions. Overall, the findings contribute to the understanding of semi-distributed subglacial meltwater systems during the retreat of a continental ice sheet (FIS) in a rapidly warming climate.

KW - Antidune

KW - Chutes-and-pools

KW - Cyclic step

KW - Humpback dune

KW - Lower flow regime

KW - Meltwater route

KW - Murtoo

KW - Subglacial

KW - Upper flow regime

UR - http://www.scopus.com/inward/record.url?scp=85163885040&partnerID=8YFLogxK

U2 - 10.1016/j.sedgeo.2023.106448

DO - 10.1016/j.sedgeo.2023.106448

M3 - Article

AN - SCOPUS:85163885040

VL - 454

JO - Sedimentary geology

JF - Sedimentary geology

SN - 0037-0738

M1 - 106448

ER -