Details
Original language | English |
---|---|
Pages (from-to) | 10207-10223 |
Number of pages | 17 |
Journal | Physical Chemistry Chemical Physics |
Volume | 15 |
Issue number | 25 |
Publication status | Published - 5 Jun 2013 |
Abstract
We report a combined theoretical and microwave spectroscopy study of the internal dynamics of the benzene dimer, a benchmark system for dispersion forces. Although the extensive ab initio calculations and experimental work on the equilibrium geometry of this dimer have converged to a tilted T-shaped structure, the rich internal dynamics due to low barriers for internal rotation have remained largely unexplored. We present new microwave spectroscopy data for both the normal (C6H6)2 and partially deuterated (C6D6)(C6H6) dimers. The splitting patterns obtained for both species are unraveled and understood using a reduced-dimensionality theoretical approach. The hindered sixfold rotation of the stem can explain the observed characteristic 1: 2: 1 tunneling splitting pattern, but only the concerted stem rotation and tilt tunneling motion, accompanied by overall rotation of the dimer, yield the correct magnitude of the splittings and their strong dependence on the dimer angular momentum J that is essential to explain the experimental data. Also the surprising observation that the splittings are reduced by 30% for the mixed (C6D6)C(C6H6)S dimer in which only the cap (C) in the T-shaped structure is deuterated, while the rotating stem (S) monomer is the same as in the homodimer, is understood using this approach. Stark shift measurements allowed us to determine the dipole moment of the benzene dimer, µ = 0.58 ± 0.051 D. The assumption that this dipole moment is the vector sum of the dipole moments induced in the monomers by the electric field of the quadrupole on the other monomer yields a calculated value of µ = 0.63 D. Furthermore, the observed Stark behavior is typical for a symmetric top, another confirmation of our analysis.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
- Chemistry(all)
- Physical and Theoretical Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Chemistry Chemical Physics, Vol. 15, No. 25, 05.06.2013, p. 10207-10223.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Unraveling the internal dynamics of the benzene dimer
T2 - A combined theoretical and microwave spectroscopy study
AU - Schnell, Melanie
AU - Erlekam, Undine
AU - Bunker, P. R.
AU - Von Helden, Gert
AU - Grabow, Jens Uwe
AU - Meijer, Gerard
AU - Van Der Avoird, Ad
PY - 2013/6/5
Y1 - 2013/6/5
N2 - We report a combined theoretical and microwave spectroscopy study of the internal dynamics of the benzene dimer, a benchmark system for dispersion forces. Although the extensive ab initio calculations and experimental work on the equilibrium geometry of this dimer have converged to a tilted T-shaped structure, the rich internal dynamics due to low barriers for internal rotation have remained largely unexplored. We present new microwave spectroscopy data for both the normal (C6H6)2 and partially deuterated (C6D6)(C6H6) dimers. The splitting patterns obtained for both species are unraveled and understood using a reduced-dimensionality theoretical approach. The hindered sixfold rotation of the stem can explain the observed characteristic 1: 2: 1 tunneling splitting pattern, but only the concerted stem rotation and tilt tunneling motion, accompanied by overall rotation of the dimer, yield the correct magnitude of the splittings and their strong dependence on the dimer angular momentum J that is essential to explain the experimental data. Also the surprising observation that the splittings are reduced by 30% for the mixed (C6D6)C(C6H6)S dimer in which only the cap (C) in the T-shaped structure is deuterated, while the rotating stem (S) monomer is the same as in the homodimer, is understood using this approach. Stark shift measurements allowed us to determine the dipole moment of the benzene dimer, µ = 0.58 ± 0.051 D. The assumption that this dipole moment is the vector sum of the dipole moments induced in the monomers by the electric field of the quadrupole on the other monomer yields a calculated value of µ = 0.63 D. Furthermore, the observed Stark behavior is typical for a symmetric top, another confirmation of our analysis.
AB - We report a combined theoretical and microwave spectroscopy study of the internal dynamics of the benzene dimer, a benchmark system for dispersion forces. Although the extensive ab initio calculations and experimental work on the equilibrium geometry of this dimer have converged to a tilted T-shaped structure, the rich internal dynamics due to low barriers for internal rotation have remained largely unexplored. We present new microwave spectroscopy data for both the normal (C6H6)2 and partially deuterated (C6D6)(C6H6) dimers. The splitting patterns obtained for both species are unraveled and understood using a reduced-dimensionality theoretical approach. The hindered sixfold rotation of the stem can explain the observed characteristic 1: 2: 1 tunneling splitting pattern, but only the concerted stem rotation and tilt tunneling motion, accompanied by overall rotation of the dimer, yield the correct magnitude of the splittings and their strong dependence on the dimer angular momentum J that is essential to explain the experimental data. Also the surprising observation that the splittings are reduced by 30% for the mixed (C6D6)C(C6H6)S dimer in which only the cap (C) in the T-shaped structure is deuterated, while the rotating stem (S) monomer is the same as in the homodimer, is understood using this approach. Stark shift measurements allowed us to determine the dipole moment of the benzene dimer, µ = 0.58 ± 0.051 D. The assumption that this dipole moment is the vector sum of the dipole moments induced in the monomers by the electric field of the quadrupole on the other monomer yields a calculated value of µ = 0.63 D. Furthermore, the observed Stark behavior is typical for a symmetric top, another confirmation of our analysis.
UR - http://www.scopus.com/inward/record.url?scp=84881098602&partnerID=8YFLogxK
U2 - 10.1039/c3cp51181b
DO - 10.1039/c3cp51181b
M3 - Article
AN - SCOPUS:84881098602
VL - 15
SP - 10207
EP - 10223
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
IS - 25
ER -