Details
Original language | English |
---|---|
Pages (from-to) | 357-361 |
Number of pages | 5 |
Journal | NATURE |
Volume | 596 |
Issue number | 7872 |
Early online date | 18 Aug 2021 |
Publication status | Published - 19 Aug 2021 |
Abstract
Supersolid states simultaneously feature properties typically associated with a solid and with a superfluid. Like a solid, they possess crystalline order, manifesting as a periodic modulation of the particle density; but unlike a typical solid, they also have superfluid properties, resulting from coherent particle delocalization across the system. Such states were initially envisioned in the context of bulk solid helium, as a possible answer to the question of whether a solid could have superfluid properties1–5. Although supersolidity has not been observed in solid helium (despite much effort)6, ultracold atomic gases provide an alternative approach, recently enabling the observation and study of supersolids with dipolar atoms7–16. However, unlike the proposed phenomena in helium, these gaseous systems have so far only shown supersolidity along a single direction. Here we demonstrate the extension of supersolid properties into two dimensions by preparing a supersolid quantum gas of dysprosium atoms on both sides of a structural phase transition similar to those occurring in ionic chains17–20, quantum wires21,22 and theoretically in chains of individual dipolar particles23,24. This opens the possibility of studying rich excitation properties25–28, including vortex formation29–31, and ground-state phases with varied geometrical structure7,32 in a highly flexible and controllable system.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: NATURE, Vol. 596, No. 7872, 19.08.2021, p. 357-361.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Two-dimensional supersolidity in a dipolar quantum gas
AU - Norcia, Matthew A.
AU - Politi, Claudia
AU - Klaus, Lauritz
AU - Poli, Elena
AU - Sohmen, Maximilian
AU - Mark, Manfred J.
AU - Bisset, Russell N.
AU - Santos, Luis
AU - Ferlaino, Francesca
N1 - Funding Information: Acknowledgements We thank the Innsbruck Erbium team, T. Bland, G. Morigi and B. Blakie for discussions. We acknowledge R. M. W. van Bijnen for developing the code for our eGPE ground-state simulations. The experimental team is financially supported through an ERC Consolidator Grant (RARE, number 681432), an NFRI grant (MIRARE, number ÖAW0600) of the Austrian Academy of Science, the QuantERA grant MAQS by the Austrian Science Fund FWF number I4391-N. L.S. and F.F. acknowledge the DFG/FWF via FOR 2247/PI2790. M.S. acknowledges support by the Austrian Science Fund FWF within the DK-ALM (number W1259-N27). L.S. thanks the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2123 QuantumFrontiers - 390837967. M.A.N. has received funding as an ESQ Postdoctoral Fellow from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF). M.J.M. acknowledges support through an ESQ Discovery Grant by the Austrian Academy of Sciences. We also acknowledge the Innsbruck Laser Core Facility, financed by the Austrian Federal Ministry of Science, Research and Economy. Part of the computational results presented have been achieved using the HPC infrastructure LEO of the University of Innsbruck.
PY - 2021/8/19
Y1 - 2021/8/19
N2 - Supersolid states simultaneously feature properties typically associated with a solid and with a superfluid. Like a solid, they possess crystalline order, manifesting as a periodic modulation of the particle density; but unlike a typical solid, they also have superfluid properties, resulting from coherent particle delocalization across the system. Such states were initially envisioned in the context of bulk solid helium, as a possible answer to the question of whether a solid could have superfluid properties1–5. Although supersolidity has not been observed in solid helium (despite much effort)6, ultracold atomic gases provide an alternative approach, recently enabling the observation and study of supersolids with dipolar atoms7–16. However, unlike the proposed phenomena in helium, these gaseous systems have so far only shown supersolidity along a single direction. Here we demonstrate the extension of supersolid properties into two dimensions by preparing a supersolid quantum gas of dysprosium atoms on both sides of a structural phase transition similar to those occurring in ionic chains17–20, quantum wires21,22 and theoretically in chains of individual dipolar particles23,24. This opens the possibility of studying rich excitation properties25–28, including vortex formation29–31, and ground-state phases with varied geometrical structure7,32 in a highly flexible and controllable system.
AB - Supersolid states simultaneously feature properties typically associated with a solid and with a superfluid. Like a solid, they possess crystalline order, manifesting as a periodic modulation of the particle density; but unlike a typical solid, they also have superfluid properties, resulting from coherent particle delocalization across the system. Such states were initially envisioned in the context of bulk solid helium, as a possible answer to the question of whether a solid could have superfluid properties1–5. Although supersolidity has not been observed in solid helium (despite much effort)6, ultracold atomic gases provide an alternative approach, recently enabling the observation and study of supersolids with dipolar atoms7–16. However, unlike the proposed phenomena in helium, these gaseous systems have so far only shown supersolidity along a single direction. Here we demonstrate the extension of supersolid properties into two dimensions by preparing a supersolid quantum gas of dysprosium atoms on both sides of a structural phase transition similar to those occurring in ionic chains17–20, quantum wires21,22 and theoretically in chains of individual dipolar particles23,24. This opens the possibility of studying rich excitation properties25–28, including vortex formation29–31, and ground-state phases with varied geometrical structure7,32 in a highly flexible and controllable system.
UR - http://www.scopus.com/inward/record.url?scp=85113133638&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-03725-7
DO - 10.1038/s41586-021-03725-7
M3 - Article
C2 - 34408330
AN - SCOPUS:85113133638
VL - 596
SP - 357
EP - 361
JO - NATURE
JF - NATURE
SN - 0028-0836
IS - 7872
ER -