Details
Original language | English |
---|---|
Pages (from-to) | 372-378 |
Number of pages | 7 |
Journal | Wave Motion |
Volume | 46 |
Issue number | 6 |
Publication status | Published - Sept 2009 |
Abstract
We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.
Keywords
- A priori estimates, Edge waves, Existence, Solitary wave solutions, Water waves
ASJC Scopus subject areas
- Mathematics(all)
- Modelling and Simulation
- Physics and Astronomy(all)
- General Physics and Astronomy
- Mathematics(all)
- Computational Mathematics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Wave Motion, Vol. 46, No. 6, 09.2009, p. 372-378.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Two-dimensional steady edge waves. Part II
T2 - Solitary waves
AU - Ehrnström, Mats
AU - Escher, Joachim
AU - Matioc, Bogdan-Vasile
PY - 2009/9
Y1 - 2009/9
N2 - We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.
AB - We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.
KW - A priori estimates
KW - Edge waves
KW - Existence
KW - Solitary wave solutions
KW - Water waves
UR - http://www.scopus.com/inward/record.url?scp=70249130458&partnerID=8YFLogxK
U2 - 10.1016/j.wavemoti.2009.06.004
DO - 10.1016/j.wavemoti.2009.06.004
M3 - Article
AN - SCOPUS:70249130458
VL - 46
SP - 372
EP - 378
JO - Wave Motion
JF - Wave Motion
SN - 0165-2125
IS - 6
ER -