Two-dimensional steady edge waves. Part II: Solitary waves

Research output: Contribution to journalArticleResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Norwegian University of Science and Technology (NTNU)
View graph of relations

Details

Original languageEnglish
Pages (from-to)372-378
Number of pages7
JournalWave Motion
Volume46
Issue number6
Publication statusPublished - Sept 2009

Abstract

We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.

Keywords

    A priori estimates, Edge waves, Existence, Solitary wave solutions, Water waves

ASJC Scopus subject areas

Cite this

Two-dimensional steady edge waves. Part II: Solitary waves. / Ehrnström, Mats; Escher, Joachim; Matioc, Bogdan-Vasile.
In: Wave Motion, Vol. 46, No. 6, 09.2009, p. 372-378.

Research output: Contribution to journalArticleResearchpeer review

Ehrnström M, Escher J, Matioc BV. Two-dimensional steady edge waves. Part II: Solitary waves. Wave Motion. 2009 Sept;46(6):372-378. doi: 10.1016/j.wavemoti.2009.06.004
Ehrnström, Mats ; Escher, Joachim ; Matioc, Bogdan-Vasile. / Two-dimensional steady edge waves. Part II : Solitary waves. In: Wave Motion. 2009 ; Vol. 46, No. 6. pp. 372-378.
Download
@article{ae6df91823814690be8092beb7283785,
title = "Two-dimensional steady edge waves. Part II: Solitary waves",
abstract = "We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.",
keywords = "A priori estimates, Edge waves, Existence, Solitary wave solutions, Water waves",
author = "Mats Ehrnstr{\"o}m and Joachim Escher and Bogdan-Vasile Matioc",
year = "2009",
month = sep,
doi = "10.1016/j.wavemoti.2009.06.004",
language = "English",
volume = "46",
pages = "372--378",
journal = "Wave Motion",
issn = "0165-2125",
publisher = "Elsevier",
number = "6",

}

Download

TY - JOUR

T1 - Two-dimensional steady edge waves. Part II

T2 - Solitary waves

AU - Ehrnström, Mats

AU - Escher, Joachim

AU - Matioc, Bogdan-Vasile

PY - 2009/9

Y1 - 2009/9

N2 - We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.

AB - We prove existence for two-dimensional solitary steady water waves propagating along the beach. The proof relies upon recent results for the periodic case, in combination with Sobolev estimates for edge wave solutions.

KW - A priori estimates

KW - Edge waves

KW - Existence

KW - Solitary wave solutions

KW - Water waves

UR - http://www.scopus.com/inward/record.url?scp=70249130458&partnerID=8YFLogxK

U2 - 10.1016/j.wavemoti.2009.06.004

DO - 10.1016/j.wavemoti.2009.06.004

M3 - Article

AN - SCOPUS:70249130458

VL - 46

SP - 372

EP - 378

JO - Wave Motion

JF - Wave Motion

SN - 0165-2125

IS - 6

ER -

By the same author(s)