Two-dimensional steady edge waves. Part I: Periodic waves

Research output: Contribution to journalArticleResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Norwegian University of Science and Technology (NTNU)
View graph of relations

Details

Original languageEnglish
Pages (from-to)363-371
Number of pages9
JournalWave Motion
Volume46
Issue number6
Publication statusPublished - Sept 2009

Abstract

We prove existence and uniqueness for two-dimensional steady water waves propagating along the beach. For small periodic shoreline data, global solutions vanishing in the seaward direction are found. In addition, we prove a priori properties of solutions, well-adapted to the physical background.

Keywords

    A priori estimates, Edge waves, Existence, Periodic solutions, Uniqueness, Water waves

ASJC Scopus subject areas

Cite this

Two-dimensional steady edge waves. Part I: Periodic waves. / Ehrnström, Mats; Escher, Joachim; Matioc, Bogdan-Vasile.
In: Wave Motion, Vol. 46, No. 6, 09.2009, p. 363-371.

Research output: Contribution to journalArticleResearchpeer review

Ehrnström M, Escher J, Matioc BV. Two-dimensional steady edge waves. Part I: Periodic waves. Wave Motion. 2009 Sept;46(6):363-371. doi: 10.1016/j.wavemoti.2009.06.002
Ehrnström, Mats ; Escher, Joachim ; Matioc, Bogdan-Vasile. / Two-dimensional steady edge waves. Part I : Periodic waves. In: Wave Motion. 2009 ; Vol. 46, No. 6. pp. 363-371.
Download
@article{e7833ab5ab894738904e6995c8730505,
title = "Two-dimensional steady edge waves. Part I: Periodic waves",
abstract = "We prove existence and uniqueness for two-dimensional steady water waves propagating along the beach. For small periodic shoreline data, global solutions vanishing in the seaward direction are found. In addition, we prove a priori properties of solutions, well-adapted to the physical background.",
keywords = "A priori estimates, Edge waves, Existence, Periodic solutions, Uniqueness, Water waves",
author = "Mats Ehrnstr{\"o}m and Joachim Escher and Bogdan-Vasile Matioc",
year = "2009",
month = sep,
doi = "10.1016/j.wavemoti.2009.06.002",
language = "English",
volume = "46",
pages = "363--371",
journal = "Wave Motion",
issn = "0165-2125",
publisher = "Elsevier",
number = "6",

}

Download

TY - JOUR

T1 - Two-dimensional steady edge waves. Part I

T2 - Periodic waves

AU - Ehrnström, Mats

AU - Escher, Joachim

AU - Matioc, Bogdan-Vasile

PY - 2009/9

Y1 - 2009/9

N2 - We prove existence and uniqueness for two-dimensional steady water waves propagating along the beach. For small periodic shoreline data, global solutions vanishing in the seaward direction are found. In addition, we prove a priori properties of solutions, well-adapted to the physical background.

AB - We prove existence and uniqueness for two-dimensional steady water waves propagating along the beach. For small periodic shoreline data, global solutions vanishing in the seaward direction are found. In addition, we prove a priori properties of solutions, well-adapted to the physical background.

KW - A priori estimates

KW - Edge waves

KW - Existence

KW - Periodic solutions

KW - Uniqueness

KW - Water waves

UR - http://www.scopus.com/inward/record.url?scp=70249124530&partnerID=8YFLogxK

U2 - 10.1016/j.wavemoti.2009.06.002

DO - 10.1016/j.wavemoti.2009.06.002

M3 - Article

AN - SCOPUS:70249124530

VL - 46

SP - 363

EP - 371

JO - Wave Motion

JF - Wave Motion

SN - 0165-2125

IS - 6

ER -

By the same author(s)