Details
Original language | English |
---|---|
Article number | 224 |
Journal | Lubricants |
Volume | 11 |
Issue number | 5 |
Publication status | Published - 16 May 2023 |
Abstract
An understanding of the proper application of metalworking fluids (MWFs) is necessary for their implementation in efficient production processes. In addition, the knowledge of the process-related aspect of chip transport and the macroscopic cooling effect, the characteristics and properties of lubricant film formation, and the cooling conditions in the secondary shear zone on the chip surface, i.e., in the direct vicinity of the material separation, represent a combined fundamental scientific issue within production engineering. The aim is to transfer methods from the field of tribology of machine elements, which have already led to a considerable gain in knowledge in this discipline, to machining and to couple them with already established approaches to machining. In the case of roller bearings, the contact pressure is in the range as the pressure in the contact zone between the cutting insert and chip. Due to this, established methods might be transferred to the cutting process. In addition to classical pin-on-plate and pin-on-ring friction investigations, film thickness measurements were carried out and compared to machining tests. The coefficient of friction determined in the planing test rig is 0.48 for dry cutting, while it is 0.47 for wet cutting. These two values are much larger than the CoF with MWFs measured on the two tribometers. It is shown that the boundary friction of MWF especially influences the machining process. Thus, additives in MWF might have a high significance in machining.
Keywords
- boundary friction, coefficient of friction, cutting, emulsion, lubrication, metalworking fluid
ASJC Scopus subject areas
- Engineering(all)
- Mechanical Engineering
- Materials Science(all)
- Surfaces, Coatings and Films
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Lubricants, Vol. 11, No. 5, 224, 16.05.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Tribological Effects of Metalworking Fluids in Cutting Processes
AU - Pape, Florian
AU - Poll, Gerhard
AU - Ellersiek, Lars
AU - Denkena, Berend
AU - Liu, Haichao
N1 - Funding Information: The authors appreciate the funding of this work within the Priority Program 2231 “Efficient cooling, lubrication and transportation—coupled mechanical and fluid-dynamical simulation methods for efficient production processes (FLUSIMPRO)” by the German Research Foundation (DFG)—project number 439904924. The publication of this article was funded by the Open Access Fund of Leibniz Universität Hannover.
PY - 2023/5/16
Y1 - 2023/5/16
N2 - An understanding of the proper application of metalworking fluids (MWFs) is necessary for their implementation in efficient production processes. In addition, the knowledge of the process-related aspect of chip transport and the macroscopic cooling effect, the characteristics and properties of lubricant film formation, and the cooling conditions in the secondary shear zone on the chip surface, i.e., in the direct vicinity of the material separation, represent a combined fundamental scientific issue within production engineering. The aim is to transfer methods from the field of tribology of machine elements, which have already led to a considerable gain in knowledge in this discipline, to machining and to couple them with already established approaches to machining. In the case of roller bearings, the contact pressure is in the range as the pressure in the contact zone between the cutting insert and chip. Due to this, established methods might be transferred to the cutting process. In addition to classical pin-on-plate and pin-on-ring friction investigations, film thickness measurements were carried out and compared to machining tests. The coefficient of friction determined in the planing test rig is 0.48 for dry cutting, while it is 0.47 for wet cutting. These two values are much larger than the CoF with MWFs measured on the two tribometers. It is shown that the boundary friction of MWF especially influences the machining process. Thus, additives in MWF might have a high significance in machining.
AB - An understanding of the proper application of metalworking fluids (MWFs) is necessary for their implementation in efficient production processes. In addition, the knowledge of the process-related aspect of chip transport and the macroscopic cooling effect, the characteristics and properties of lubricant film formation, and the cooling conditions in the secondary shear zone on the chip surface, i.e., in the direct vicinity of the material separation, represent a combined fundamental scientific issue within production engineering. The aim is to transfer methods from the field of tribology of machine elements, which have already led to a considerable gain in knowledge in this discipline, to machining and to couple them with already established approaches to machining. In the case of roller bearings, the contact pressure is in the range as the pressure in the contact zone between the cutting insert and chip. Due to this, established methods might be transferred to the cutting process. In addition to classical pin-on-plate and pin-on-ring friction investigations, film thickness measurements were carried out and compared to machining tests. The coefficient of friction determined in the planing test rig is 0.48 for dry cutting, while it is 0.47 for wet cutting. These two values are much larger than the CoF with MWFs measured on the two tribometers. It is shown that the boundary friction of MWF especially influences the machining process. Thus, additives in MWF might have a high significance in machining.
KW - boundary friction
KW - coefficient of friction
KW - cutting
KW - emulsion
KW - lubrication
KW - metalworking fluid
UR - http://www.scopus.com/inward/record.url?scp=85160313497&partnerID=8YFLogxK
U2 - 10.3390/lubricants11050224
DO - 10.3390/lubricants11050224
M3 - Article
AN - SCOPUS:85160313497
VL - 11
JO - Lubricants
JF - Lubricants
SN - 2075-4442
IS - 5
M1 - 224
ER -