Details
Original language | English |
---|---|
Pages (from-to) | 237-252 |
Number of pages | 16 |
Journal | Quarterly Journal of Mathematics |
Volume | 72 |
Issue number | 1-2 |
Early online date | 15 Jan 2021 |
Publication status | Published - Jun 2021 |
Abstract
We give a characterization of Atiyah's and Hitchin's transverse Hilbert schemes of points on a symplectic surface in terms of bi-Poisson structures. Furthermore, we describe the geometry of hyperkähler manifolds arising from the transverse Hilbert scheme construction, with particular attention paid to the monopole moduli spaces.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Quarterly Journal of Mathematics, Vol. 72, No. 1-2, 06.2021, p. 237-252.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Transverse hilbert schemes, bi-hamiltonian systems and hyperkähler geometry
AU - Bielawski, Roger
PY - 2021/6
Y1 - 2021/6
N2 - We give a characterization of Atiyah's and Hitchin's transverse Hilbert schemes of points on a symplectic surface in terms of bi-Poisson structures. Furthermore, we describe the geometry of hyperkähler manifolds arising from the transverse Hilbert scheme construction, with particular attention paid to the monopole moduli spaces.
AB - We give a characterization of Atiyah's and Hitchin's transverse Hilbert schemes of points on a symplectic surface in terms of bi-Poisson structures. Furthermore, we describe the geometry of hyperkähler manifolds arising from the transverse Hilbert scheme construction, with particular attention paid to the monopole moduli spaces.
UR - http://www.scopus.com/inward/record.url?scp=85108943353&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2001.05669
DO - 10.48550/arXiv.2001.05669
M3 - Article
AN - SCOPUS:85108943353
VL - 72
SP - 237
EP - 252
JO - Quarterly Journal of Mathematics
JF - Quarterly Journal of Mathematics
SN - 0033-5606
IS - 1-2
ER -