Details
Original language | English |
---|---|
Pages (from-to) | 1489-1500 |
Number of pages | 12 |
Journal | Journal of Materials Chemistry B |
Volume | 6 |
Issue number | 10 |
Early online date | 14 Feb 2018 |
Publication status | Published - 14 Mar 2018 |
Externally published | Yes |
Abstract
Thermoresponsive polymer coatings can facilitate cell sheet fabrication under mild conditions by promoting cell adhesion and proliferation at 37 °C. At lower temperatures the detachment of confluent cell sheets is triggered without enzymatic treatment. Thus, confluent cell sheets with intact extracellular matrix for regenerative medicine or tissue engineering applications become available. Herein, we applied the previously identified structural design parameters of functional, thermoresponsive poly(glycidyl ether) brushes on gold to the more application-relevant substrate glass via the self-assembly of a corresponding block copolymer (PGE-AA) with a short surface-reactive, amine-presenting anchor block. Both, physical and covalent immobilization on glass via either multivalent ionic interactions of the anchor block with bare glass or the coupling of the anchor block to a polydopamine (PDA) adhesion layer on glass resulted in stable coatings. Atomic force microscopy revealed a high degree of roughness of covalently attached coatings on the PDA adhesion layer, while physically attached coatings on bare glass were smooth and in the brush-like regime. Cell sheets of primary human dermal fibroblasts detached reliably (86%) and within 20 ± 10 min from physically tethered PGE-AA coatings on glass when prepared under cloud point grafting conditions. The presence of the laterally inhomogeneous PDA adhesion layer, however, hindered the spontaneous temperature-triggered cell detachment from covalently grafted PGE-AA, decreasing both detachment rate and reliability. Despite being only physically attached, self-assembled monolayer brushes of PGE-AA block copolymers on glass are functional and stable thermoresponsive coatings for application in cell sheet fabrication of human fibroblasts as determined by X-ray photoelectron spectroscopy.
ASJC Scopus subject areas
- Chemistry(all)
- Engineering(all)
- Biomedical Engineering
- Materials Science(all)
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Materials Chemistry B, Vol. 6, No. 10, 14.03.2018, p. 1489-1500.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Transfer of functional thermoresponsive poly(glycidyl ether) coatings for cell sheet fabrication from gold to glass surfaces
AU - Heinen, Silke
AU - Rackow, Simon
AU - Cuellar-Camacho, Jose Luis
AU - Donskyi, Ievgen S.
AU - Unger, Wolfgang E.S.
AU - Weinhart, Marie
N1 - Funding Information: S. H. kindly acknowledges the financial support of FCI through a Chemiefonds Scholarship and M. W. is grateful to the BMBF for the support through grant FKZ: 13N13523. The authors are grateful to D. Treu and J. Radnik for operating the XPS instrument at BAM. Publisher Copyright: © 2018 The Royal Society of Chemistry.
PY - 2018/3/14
Y1 - 2018/3/14
N2 - Thermoresponsive polymer coatings can facilitate cell sheet fabrication under mild conditions by promoting cell adhesion and proliferation at 37 °C. At lower temperatures the detachment of confluent cell sheets is triggered without enzymatic treatment. Thus, confluent cell sheets with intact extracellular matrix for regenerative medicine or tissue engineering applications become available. Herein, we applied the previously identified structural design parameters of functional, thermoresponsive poly(glycidyl ether) brushes on gold to the more application-relevant substrate glass via the self-assembly of a corresponding block copolymer (PGE-AA) with a short surface-reactive, amine-presenting anchor block. Both, physical and covalent immobilization on glass via either multivalent ionic interactions of the anchor block with bare glass or the coupling of the anchor block to a polydopamine (PDA) adhesion layer on glass resulted in stable coatings. Atomic force microscopy revealed a high degree of roughness of covalently attached coatings on the PDA adhesion layer, while physically attached coatings on bare glass were smooth and in the brush-like regime. Cell sheets of primary human dermal fibroblasts detached reliably (86%) and within 20 ± 10 min from physically tethered PGE-AA coatings on glass when prepared under cloud point grafting conditions. The presence of the laterally inhomogeneous PDA adhesion layer, however, hindered the spontaneous temperature-triggered cell detachment from covalently grafted PGE-AA, decreasing both detachment rate and reliability. Despite being only physically attached, self-assembled monolayer brushes of PGE-AA block copolymers on glass are functional and stable thermoresponsive coatings for application in cell sheet fabrication of human fibroblasts as determined by X-ray photoelectron spectroscopy.
AB - Thermoresponsive polymer coatings can facilitate cell sheet fabrication under mild conditions by promoting cell adhesion and proliferation at 37 °C. At lower temperatures the detachment of confluent cell sheets is triggered without enzymatic treatment. Thus, confluent cell sheets with intact extracellular matrix for regenerative medicine or tissue engineering applications become available. Herein, we applied the previously identified structural design parameters of functional, thermoresponsive poly(glycidyl ether) brushes on gold to the more application-relevant substrate glass via the self-assembly of a corresponding block copolymer (PGE-AA) with a short surface-reactive, amine-presenting anchor block. Both, physical and covalent immobilization on glass via either multivalent ionic interactions of the anchor block with bare glass or the coupling of the anchor block to a polydopamine (PDA) adhesion layer on glass resulted in stable coatings. Atomic force microscopy revealed a high degree of roughness of covalently attached coatings on the PDA adhesion layer, while physically attached coatings on bare glass were smooth and in the brush-like regime. Cell sheets of primary human dermal fibroblasts detached reliably (86%) and within 20 ± 10 min from physically tethered PGE-AA coatings on glass when prepared under cloud point grafting conditions. The presence of the laterally inhomogeneous PDA adhesion layer, however, hindered the spontaneous temperature-triggered cell detachment from covalently grafted PGE-AA, decreasing both detachment rate and reliability. Despite being only physically attached, self-assembled monolayer brushes of PGE-AA block copolymers on glass are functional and stable thermoresponsive coatings for application in cell sheet fabrication of human fibroblasts as determined by X-ray photoelectron spectroscopy.
UR - http://www.scopus.com/inward/record.url?scp=85043401916&partnerID=8YFLogxK
U2 - 10.1039/c7tb03263c
DO - 10.1039/c7tb03263c
M3 - Article
C2 - 32254213
AN - SCOPUS:85043401916
VL - 6
SP - 1489
EP - 1500
JO - Journal of Materials Chemistry B
JF - Journal of Materials Chemistry B
SN - 2050-7518
IS - 10
ER -