Details
Original language | English |
---|---|
Publication status | E-pub ahead of print - 9 May 2019 |
Abstract
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2019.
Research output: Working paper/Preprint › Preprint
}
TY - UNPB
T1 - Traffic Queue Length and Pressure Estimation for Road Networks with Geometric Deep Learning Algorithms
AU - Ehlers, Simon Friedrich Gerhard
PY - 2019/5/9
Y1 - 2019/5/9
N2 - Due to urbanization and the increase of individual mobility, in most metropolitan areas around the world congestion and inefficient traffic management occur. Highly necessary intelligent traffic control systems, which are able to reduce congestion, rely on measurements of traffic situations in urban road networks and freeways. Unfortunately, the instrumentation for accurate traffic measurement is expensive and not widely implemented. This thesis addresses this problem, where relatively inexpensive and easy to install loop-detectors are used by a geometric deep learning algorithm, which uses loop-detector data in a spatial context of a road network, to estimate queue length in front of signalized intersections, which can be then used for following traffic control tasks. Therefore, in the first part of this work a conventional estimation method for queue length (which does not use machine learning techniques) based on second-by-second loop-detector data is implemented, which uses detected shockwaves in queues to estimate the len gth and point of time for the maximum queue. The method is later used as reference but also as additional input information for the geometric deep learning approach. In the second part the geometric deep learning algorithm is developed, which uses spatial correlations in the road network but also temporal correlations in detector data time sequences by new attention mechanisms, to overcome the limitations of conventional methods like excess traffic demand, lane changing and stop-and-go traffic. Therefore, it is necessary to abstract the topology of the road network in a graph. Both approaches are compared regarding their performance, reliability as well as limitations and validated by usage of the traffic simulation software SUMO (Simulation of Urban MObility). Finally, the results are discussed in the conclusions and further investigations are suggested.
AB - Due to urbanization and the increase of individual mobility, in most metropolitan areas around the world congestion and inefficient traffic management occur. Highly necessary intelligent traffic control systems, which are able to reduce congestion, rely on measurements of traffic situations in urban road networks and freeways. Unfortunately, the instrumentation for accurate traffic measurement is expensive and not widely implemented. This thesis addresses this problem, where relatively inexpensive and easy to install loop-detectors are used by a geometric deep learning algorithm, which uses loop-detector data in a spatial context of a road network, to estimate queue length in front of signalized intersections, which can be then used for following traffic control tasks. Therefore, in the first part of this work a conventional estimation method for queue length (which does not use machine learning techniques) based on second-by-second loop-detector data is implemented, which uses detected shockwaves in queues to estimate the len gth and point of time for the maximum queue. The method is later used as reference but also as additional input information for the geometric deep learning approach. In the second part the geometric deep learning algorithm is developed, which uses spatial correlations in the road network but also temporal correlations in detector data time sequences by new attention mechanisms, to overcome the limitations of conventional methods like excess traffic demand, lane changing and stop-and-go traffic. Therefore, it is necessary to abstract the topology of the road network in a graph. Both approaches are compared regarding their performance, reliability as well as limitations and validated by usage of the traffic simulation software SUMO (Simulation of Urban MObility). Finally, the results are discussed in the conclusions and further investigations are suggested.
U2 - 10.48550/arXiv.1905.03889
DO - 10.48550/arXiv.1905.03889
M3 - Preprint
BT - Traffic Queue Length and Pressure Estimation for Road Networks with Geometric Deep Learning Algorithms
ER -