Toeplitz operators on non-reflexive Fock spaces

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Robert Fulsche

Research Organisations

View graph of relations

Details

Original languageEnglish
Pages (from-to)1115-1148
Number of pages34
JournalRevista Matematica Iberoamericana
Volume40
Issue number3
Publication statusPublished - 31 Jan 2024

Abstract

We generalize several results on Toeplitz operators over reflexive, standard weighted Fock spaces Ftp to the non-reflexive cases p D 1; 1. Among these results are the characterization of compactness and the Fredholm property of such operators, a well-known representation of the Toeplitz algebra, and a characterization of the essential center of the Toeplitz algebra. Further, we improve several results related to correspondence theory, e.g., we improve previous results on the correspondence of algebras and we give a correspondence theoretic version of the well-known Berger–Coburn estimates.

Keywords

    correspondence theory, Fock spaces, Toeplitz algebras

ASJC Scopus subject areas

Cite this

Toeplitz operators on non-reflexive Fock spaces. / Fulsche, Robert.
In: Revista Matematica Iberoamericana, Vol. 40, No. 3, 31.01.2024, p. 1115-1148.

Research output: Contribution to journalArticleResearchpeer review

Fulsche R. Toeplitz operators on non-reflexive Fock spaces. Revista Matematica Iberoamericana. 2024 Jan 31;40(3):1115-1148. doi: 10.48550/arXiv.2202.11440, 10.4171/RMI/1459
Fulsche, Robert. / Toeplitz operators on non-reflexive Fock spaces. In: Revista Matematica Iberoamericana. 2024 ; Vol. 40, No. 3. pp. 1115-1148.
Download
@article{0fa15c01fb0144a29b04f08d149a99a2,
title = "Toeplitz operators on non-reflexive Fock spaces",
abstract = "We generalize several results on Toeplitz operators over reflexive, standard weighted Fock spaces Ftp to the non-reflexive cases p D 1; 1. Among these results are the characterization of compactness and the Fredholm property of such operators, a well-known representation of the Toeplitz algebra, and a characterization of the essential center of the Toeplitz algebra. Further, we improve several results related to correspondence theory, e.g., we improve previous results on the correspondence of algebras and we give a correspondence theoretic version of the well-known Berger–Coburn estimates.",
keywords = "correspondence theory, Fock spaces, Toeplitz algebras",
author = "Robert Fulsche",
note = "Publisher Copyright: {\textcopyright} 2024 Real Sociedad Matem{\'a}tica Espa{\~n}ola.",
year = "2024",
month = jan,
day = "31",
doi = "10.48550/arXiv.2202.11440",
language = "English",
volume = "40",
pages = "1115--1148",
journal = "Revista Matematica Iberoamericana",
issn = "0213-2230",
publisher = "Universidad Autonoma de Madrid",
number = "3",

}

Download

TY - JOUR

T1 - Toeplitz operators on non-reflexive Fock spaces

AU - Fulsche, Robert

N1 - Publisher Copyright: © 2024 Real Sociedad Matemática Española.

PY - 2024/1/31

Y1 - 2024/1/31

N2 - We generalize several results on Toeplitz operators over reflexive, standard weighted Fock spaces Ftp to the non-reflexive cases p D 1; 1. Among these results are the characterization of compactness and the Fredholm property of such operators, a well-known representation of the Toeplitz algebra, and a characterization of the essential center of the Toeplitz algebra. Further, we improve several results related to correspondence theory, e.g., we improve previous results on the correspondence of algebras and we give a correspondence theoretic version of the well-known Berger–Coburn estimates.

AB - We generalize several results on Toeplitz operators over reflexive, standard weighted Fock spaces Ftp to the non-reflexive cases p D 1; 1. Among these results are the characterization of compactness and the Fredholm property of such operators, a well-known representation of the Toeplitz algebra, and a characterization of the essential center of the Toeplitz algebra. Further, we improve several results related to correspondence theory, e.g., we improve previous results on the correspondence of algebras and we give a correspondence theoretic version of the well-known Berger–Coburn estimates.

KW - correspondence theory

KW - Fock spaces

KW - Toeplitz algebras

UR - http://www.scopus.com/inward/record.url?scp=85192864243&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2202.11440

DO - 10.48550/arXiv.2202.11440

M3 - Article

AN - SCOPUS:85192864243

VL - 40

SP - 1115

EP - 1148

JO - Revista Matematica Iberoamericana

JF - Revista Matematica Iberoamericana

SN - 0213-2230

IS - 3

ER -