Details
Original language | English |
---|---|
Pages (from-to) | 1980-1986 |
Number of pages | 7 |
Journal | American mineralogist |
Volume | 106 |
Issue number | 12 |
Publication status | Published - 1 Dec 2021 |
Abstract
Tin isotope geochemistry of cassiterite may allow for reconstructing the fluid evolution of tin ore deposits. Here, we present cathodoluminescence (CL) imaging, trace element, and in situ Sn isotope compositions of two cassiterite crystals from an early and a relatively late stage of ore formation of the Xiling vein-style Sn deposit, southeastern China, by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS). Our results show that the early-stage cassiterite from a high-temperature feldspar-stable hydrothermal environment has core, mantle, and rim zones with a systematic decrease in δ124/117Sn3161A (relative to the Sn standard NIST 3161 A) from +0.38 ± 0.06‰ in the crystal core to -0.12 ± 0.06‰ (2 SE) in the mantle zone. This isotopic evolution, also paralleled by a decrease in Ta content by two orders of magnitude, suggests a fluid batch evolving toward isotopically lighter Sn. The very rim zone of this crystal has an intermediate tin isotope composition at about +0.05‰ δ124/117Sn3161A, combined with elevated Ta, suggestive of a second fluid batch. The late-stage cassiterite crystal from a muscovite-stable hydrothermal environment has a core with an evolved Sn isotope composition at about -0.15‰ δ124/117Sn3161A combined with low Ta, and a rim with heavier Sn isotope compositions up to +0.30 ± 0.08‰ δ124/117Sn3161A and higher Ta contents. As for the early-stage crystal, two diferent fluid batches must be involved in the formation of this crystal. Our pilot study highlights the advantage of spatially resolved analysis compared to conventional, solution Sn-isotope analysis of bulk cassiterite crystals. The Sn isotope variations at the microscale reveal the complexity of cassiterite crystal growth by a combination of closed- and open-system fluid evolution and isotope fractionation.
Keywords
- cassiterite, in-situ Sn isotope, tin ore deposit, trace-element mapping, Xiling
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: American mineralogist, Vol. 106, No. 12, 01.12.2021, p. 1980-1986.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Tin isotopes via fs-LA-MC-ICP-MS analysis record complex fluid evolution in single cassiterite crystals
AU - Liu, Peng
AU - Mao, Jingwen
AU - Lehmann, Bernd
AU - Weyer, Stefan
AU - Horn, Ingo
AU - Mathur, Ryan
AU - Wang, Fangyue
AU - Zhou, Zhenhua
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Tin isotope geochemistry of cassiterite may allow for reconstructing the fluid evolution of tin ore deposits. Here, we present cathodoluminescence (CL) imaging, trace element, and in situ Sn isotope compositions of two cassiterite crystals from an early and a relatively late stage of ore formation of the Xiling vein-style Sn deposit, southeastern China, by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS). Our results show that the early-stage cassiterite from a high-temperature feldspar-stable hydrothermal environment has core, mantle, and rim zones with a systematic decrease in δ124/117Sn3161A (relative to the Sn standard NIST 3161 A) from +0.38 ± 0.06‰ in the crystal core to -0.12 ± 0.06‰ (2 SE) in the mantle zone. This isotopic evolution, also paralleled by a decrease in Ta content by two orders of magnitude, suggests a fluid batch evolving toward isotopically lighter Sn. The very rim zone of this crystal has an intermediate tin isotope composition at about +0.05‰ δ124/117Sn3161A, combined with elevated Ta, suggestive of a second fluid batch. The late-stage cassiterite crystal from a muscovite-stable hydrothermal environment has a core with an evolved Sn isotope composition at about -0.15‰ δ124/117Sn3161A combined with low Ta, and a rim with heavier Sn isotope compositions up to +0.30 ± 0.08‰ δ124/117Sn3161A and higher Ta contents. As for the early-stage crystal, two diferent fluid batches must be involved in the formation of this crystal. Our pilot study highlights the advantage of spatially resolved analysis compared to conventional, solution Sn-isotope analysis of bulk cassiterite crystals. The Sn isotope variations at the microscale reveal the complexity of cassiterite crystal growth by a combination of closed- and open-system fluid evolution and isotope fractionation.
AB - Tin isotope geochemistry of cassiterite may allow for reconstructing the fluid evolution of tin ore deposits. Here, we present cathodoluminescence (CL) imaging, trace element, and in situ Sn isotope compositions of two cassiterite crystals from an early and a relatively late stage of ore formation of the Xiling vein-style Sn deposit, southeastern China, by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS). Our results show that the early-stage cassiterite from a high-temperature feldspar-stable hydrothermal environment has core, mantle, and rim zones with a systematic decrease in δ124/117Sn3161A (relative to the Sn standard NIST 3161 A) from +0.38 ± 0.06‰ in the crystal core to -0.12 ± 0.06‰ (2 SE) in the mantle zone. This isotopic evolution, also paralleled by a decrease in Ta content by two orders of magnitude, suggests a fluid batch evolving toward isotopically lighter Sn. The very rim zone of this crystal has an intermediate tin isotope composition at about +0.05‰ δ124/117Sn3161A, combined with elevated Ta, suggestive of a second fluid batch. The late-stage cassiterite crystal from a muscovite-stable hydrothermal environment has a core with an evolved Sn isotope composition at about -0.15‰ δ124/117Sn3161A combined with low Ta, and a rim with heavier Sn isotope compositions up to +0.30 ± 0.08‰ δ124/117Sn3161A and higher Ta contents. As for the early-stage crystal, two diferent fluid batches must be involved in the formation of this crystal. Our pilot study highlights the advantage of spatially resolved analysis compared to conventional, solution Sn-isotope analysis of bulk cassiterite crystals. The Sn isotope variations at the microscale reveal the complexity of cassiterite crystal growth by a combination of closed- and open-system fluid evolution and isotope fractionation.
KW - cassiterite
KW - in-situ Sn isotope
KW - tin ore deposit
KW - trace-element mapping
KW - Xiling
UR - http://www.scopus.com/inward/record.url?scp=85120860307&partnerID=8YFLogxK
U2 - 10.2138/am-2021-7558
DO - 10.2138/am-2021-7558
M3 - Article
AN - SCOPUS:85120860307
VL - 106
SP - 1980
EP - 1986
JO - American mineralogist
JF - American mineralogist
SN - 0003-004X
IS - 12
ER -