Details
Original language | English |
---|---|
Pages (from-to) | 95-111 |
Number of pages | 17 |
Journal | Geochimica et cosmochimica acta |
Volume | 217 |
Publication status | Published - 15 Nov 2017 |
Abstract
In this work, a femtosecond laser ablation (LA) system coupled to a multi-collector inductively coupled plasma-mass spectrometer (fs-LA-MC-ICP-MS) was used to obtain laterally resolved (30–80 μm), high-precision combined Ni and Fe stable isotope ratio data for a variety of mineral phases (olivine, kamacite, taenite, schreibersite and troilite) composing main group pallasites (PMG) and iron meteorites. The stable isotopic signatures of Fe and Ni at the mineral scale, in combination with the factors governing the kinetic or equilibrium isotope fractionation processes, are used to interpret the thermal histories of small differentiated asteroidal bodies. As Fe isotopic zoning is only barely resolvable within the internal precision level of the isotope ratio measurements within a single olivine in Esquel PMG, the isotopically lighter olivine core relative to the rim (Δ56/54Ferim-core = 0.059‰) suggests that the olivines were largely thermally equilibrated. The observed hint of an isotopic and concentration gradient for Fe of crudely similar width is interpreted here to reflect Fe loss from olivine in the process of partial reduction of the olivine rim. The ranges of the determined Fe and Ni isotopic signatures of troilite (δ56/54Fe of −0.66 to −0.09‰) and schreibersite (δ56/54Fe of −0.48 to −0.09‰, and δ62/60Ni of −0.64 to +0.29‰) may result from thermal equilibration. Schreibersite and troilite likely remained in equilibrium with their enclosing metal to temperatures significantly below their point of crystallization. The Ni isotopic signatures of bulk metal and schreibersite correlate negatively, with isotopically lighter Ni in the metal of PMGs and isotopically heavier Ni in the metal of the iron meteorites analyzed. As such, the light Ni isotopic signatures previously observed in PMG metal relative to chondrites may not result from heterogeneity in the Solar Nebula, but rather reflect fractionation in the metal-schreibersite system. Comparison between the isotope ratio profiles of Fe and Ni determined across kamacite-taenite interfaces (Δ56/54Fekam-tae = −0.51 to −0.69‰ and Δ62/60Nikam-tae = +1.59 to +2.50‰) and theoretical taenite sub-solidus diffusive isotopic zoning broadly constrain the cooling rates of Esquel, CMS 04071 PMGs and Udei Station IAB to between ∼25 and 500 °C/Myr.
Keywords
- Core formation, Fe and Ni stable isotope ratios, Iron meteorites, Pallasites, Schreibersite
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Geochimica et cosmochimica acta, Vol. 217, 15.11.2017, p. 95-111.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Thermal equilibration of iron meteorite and pallasite parent bodies recorded at the mineral scale by Fe and Ni isotope systematics
AU - Chernonozhkin, Stepan M.
AU - Weyrauch, Mona
AU - Goderis, Steven
AU - Oeser, Martin
AU - McKibbin, Seann J.
AU - Horn, Ingo
AU - Hecht, Lutz
AU - Weyer, Stefan
AU - Claeys, Philippe
AU - Vanhaecke, Frank
PY - 2017/11/15
Y1 - 2017/11/15
N2 - In this work, a femtosecond laser ablation (LA) system coupled to a multi-collector inductively coupled plasma-mass spectrometer (fs-LA-MC-ICP-MS) was used to obtain laterally resolved (30–80 μm), high-precision combined Ni and Fe stable isotope ratio data for a variety of mineral phases (olivine, kamacite, taenite, schreibersite and troilite) composing main group pallasites (PMG) and iron meteorites. The stable isotopic signatures of Fe and Ni at the mineral scale, in combination with the factors governing the kinetic or equilibrium isotope fractionation processes, are used to interpret the thermal histories of small differentiated asteroidal bodies. As Fe isotopic zoning is only barely resolvable within the internal precision level of the isotope ratio measurements within a single olivine in Esquel PMG, the isotopically lighter olivine core relative to the rim (Δ56/54Ferim-core = 0.059‰) suggests that the olivines were largely thermally equilibrated. The observed hint of an isotopic and concentration gradient for Fe of crudely similar width is interpreted here to reflect Fe loss from olivine in the process of partial reduction of the olivine rim. The ranges of the determined Fe and Ni isotopic signatures of troilite (δ56/54Fe of −0.66 to −0.09‰) and schreibersite (δ56/54Fe of −0.48 to −0.09‰, and δ62/60Ni of −0.64 to +0.29‰) may result from thermal equilibration. Schreibersite and troilite likely remained in equilibrium with their enclosing metal to temperatures significantly below their point of crystallization. The Ni isotopic signatures of bulk metal and schreibersite correlate negatively, with isotopically lighter Ni in the metal of PMGs and isotopically heavier Ni in the metal of the iron meteorites analyzed. As such, the light Ni isotopic signatures previously observed in PMG metal relative to chondrites may not result from heterogeneity in the Solar Nebula, but rather reflect fractionation in the metal-schreibersite system. Comparison between the isotope ratio profiles of Fe and Ni determined across kamacite-taenite interfaces (Δ56/54Fekam-tae = −0.51 to −0.69‰ and Δ62/60Nikam-tae = +1.59 to +2.50‰) and theoretical taenite sub-solidus diffusive isotopic zoning broadly constrain the cooling rates of Esquel, CMS 04071 PMGs and Udei Station IAB to between ∼25 and 500 °C/Myr.
AB - In this work, a femtosecond laser ablation (LA) system coupled to a multi-collector inductively coupled plasma-mass spectrometer (fs-LA-MC-ICP-MS) was used to obtain laterally resolved (30–80 μm), high-precision combined Ni and Fe stable isotope ratio data for a variety of mineral phases (olivine, kamacite, taenite, schreibersite and troilite) composing main group pallasites (PMG) and iron meteorites. The stable isotopic signatures of Fe and Ni at the mineral scale, in combination with the factors governing the kinetic or equilibrium isotope fractionation processes, are used to interpret the thermal histories of small differentiated asteroidal bodies. As Fe isotopic zoning is only barely resolvable within the internal precision level of the isotope ratio measurements within a single olivine in Esquel PMG, the isotopically lighter olivine core relative to the rim (Δ56/54Ferim-core = 0.059‰) suggests that the olivines were largely thermally equilibrated. The observed hint of an isotopic and concentration gradient for Fe of crudely similar width is interpreted here to reflect Fe loss from olivine in the process of partial reduction of the olivine rim. The ranges of the determined Fe and Ni isotopic signatures of troilite (δ56/54Fe of −0.66 to −0.09‰) and schreibersite (δ56/54Fe of −0.48 to −0.09‰, and δ62/60Ni of −0.64 to +0.29‰) may result from thermal equilibration. Schreibersite and troilite likely remained in equilibrium with their enclosing metal to temperatures significantly below their point of crystallization. The Ni isotopic signatures of bulk metal and schreibersite correlate negatively, with isotopically lighter Ni in the metal of PMGs and isotopically heavier Ni in the metal of the iron meteorites analyzed. As such, the light Ni isotopic signatures previously observed in PMG metal relative to chondrites may not result from heterogeneity in the Solar Nebula, but rather reflect fractionation in the metal-schreibersite system. Comparison between the isotope ratio profiles of Fe and Ni determined across kamacite-taenite interfaces (Δ56/54Fekam-tae = −0.51 to −0.69‰ and Δ62/60Nikam-tae = +1.59 to +2.50‰) and theoretical taenite sub-solidus diffusive isotopic zoning broadly constrain the cooling rates of Esquel, CMS 04071 PMGs and Udei Station IAB to between ∼25 and 500 °C/Myr.
KW - Core formation
KW - Fe and Ni stable isotope ratios
KW - Iron meteorites
KW - Pallasites
KW - Schreibersite
UR - http://www.scopus.com/inward/record.url?scp=85028504270&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2017.08.022
DO - 10.1016/j.gca.2017.08.022
M3 - Article
AN - SCOPUS:85028504270
VL - 217
SP - 95
EP - 111
JO - Geochimica et cosmochimica acta
JF - Geochimica et cosmochimica acta
SN - 0016-7037
ER -