Details
Original language | English |
---|---|
Qualification | Doctor rerum naturalium |
Awarding Institution | |
Supervised by |
|
Date of Award | 13 Nov 2015 |
Place of Publication | Hannover |
Publication status | Published - 2018 |
Abstract
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Hannover, 2018. 121 p.
Research output: Thesis › Doctoral thesis
}
TY - BOOK
T1 - Theoretical study of the preparation of quantum degenerate mixtures for precision atom interferometry
AU - Posso Trujillo, Katerine
N1 - Doctoral thesis
PY - 2018
Y1 - 2018
N2 - In dieser Arbeit werden quantenentartete Gemische auf ihre Eigenschaften als Quellen für Präzisionsatominterferometer zum Test des Einsteinschen Äquivalenzprinzips untersucht. Um die notwendige Auflösung zu erreichen, sollen die Interferometriezyklen auf mehrere Sekunden ausgedehnt werden. Die bekannten Hauptbeiträge an systematischen Effekten, die bei realistischen Aufbauten auftreten, sind hierbei berücksichtigt, und für einige werden Strategien zur Unterdrückung präsentiert. Die Gemische die hier betrachtet werden, sind Bose-Einstein-Kondensate aus 87Rb/85Rb und 87Rb/41K. Eine simultane Absenkung der Expansionsraten beider Komponenten in den Temperaturbereich von weniger als 100 pK ist notwendig, um einerseits freie Entwicklungszeiten der Kondensate von 10 s zu ermöglichen, und andererseits systematische Fehler zum Beispiel verursacht durch die atomare Bewegung in den Wellenfronten der Lichtfelder zu unterdrücken. Um diese Anforderungen erfüllen zu könnnen, wurde die Rolle der Wechselwirkung der Teilchen untereinander betrachtet, die von ihrer einfachen Durchstimmbarkeit mit Hilfe von Feshbach-Resonanzen profitiert. Neben der Manipulierbarkeit der Wechselwirkung wurden Delta-Kicks zur Kollimation untersucht, durch die der Einfluss der führenden systematischen Fehler unterdrückt wird. Neben dem oben genannten Gemisch wurden auch die Gemische 87Rb/39K und 87Rb/170Yb untersucht. Das 87Rb/87K-Gemisch wurde als Kandidat für Hochpräzisionsatominterferomtrie in Mikrogravitation identifiziert. Das Yb-basierte Gemisch hat den vorteil, dass die Wechselwirklung ohne zusätzliche Feshbachfelder durchgeführt werden kann. Für die Delta-Kicks wurde eine Vielzahl an Fallengeometrien untersucht, wie etwa die Dipolfalle, chip-basierte Potentiale, sowie das TOP-Fallenpotential (engl.: Time-Orbiting-Potential), um Majorana-Verluste zu verhindern. Die Berechnungen wurden mit Hilfe der Gross Pitaevskii Gleichung und Skalierungstheorie vorgenommen.
AB - In dieser Arbeit werden quantenentartete Gemische auf ihre Eigenschaften als Quellen für Präzisionsatominterferometer zum Test des Einsteinschen Äquivalenzprinzips untersucht. Um die notwendige Auflösung zu erreichen, sollen die Interferometriezyklen auf mehrere Sekunden ausgedehnt werden. Die bekannten Hauptbeiträge an systematischen Effekten, die bei realistischen Aufbauten auftreten, sind hierbei berücksichtigt, und für einige werden Strategien zur Unterdrückung präsentiert. Die Gemische die hier betrachtet werden, sind Bose-Einstein-Kondensate aus 87Rb/85Rb und 87Rb/41K. Eine simultane Absenkung der Expansionsraten beider Komponenten in den Temperaturbereich von weniger als 100 pK ist notwendig, um einerseits freie Entwicklungszeiten der Kondensate von 10 s zu ermöglichen, und andererseits systematische Fehler zum Beispiel verursacht durch die atomare Bewegung in den Wellenfronten der Lichtfelder zu unterdrücken. Um diese Anforderungen erfüllen zu könnnen, wurde die Rolle der Wechselwirkung der Teilchen untereinander betrachtet, die von ihrer einfachen Durchstimmbarkeit mit Hilfe von Feshbach-Resonanzen profitiert. Neben der Manipulierbarkeit der Wechselwirkung wurden Delta-Kicks zur Kollimation untersucht, durch die der Einfluss der führenden systematischen Fehler unterdrückt wird. Neben dem oben genannten Gemisch wurden auch die Gemische 87Rb/39K und 87Rb/170Yb untersucht. Das 87Rb/87K-Gemisch wurde als Kandidat für Hochpräzisionsatominterferomtrie in Mikrogravitation identifiziert. Das Yb-basierte Gemisch hat den vorteil, dass die Wechselwirklung ohne zusätzliche Feshbachfelder durchgeführt werden kann. Für die Delta-Kicks wurde eine Vielzahl an Fallengeometrien untersucht, wie etwa die Dipolfalle, chip-basierte Potentiale, sowie das TOP-Fallenpotential (engl.: Time-Orbiting-Potential), um Majorana-Verluste zu verhindern. Die Berechnungen wurden mit Hilfe der Gross Pitaevskii Gleichung und Skalierungstheorie vorgenommen.
U2 - 10.15488/3418
DO - 10.15488/3418
M3 - Doctoral thesis
CY - Hannover
ER -