Details
Original language | English |
---|---|
Article number | 235009 |
Journal | Classical and quantum gravity |
Volume | 39 |
Issue number | 23 |
Publication status | Published - 29 Nov 2022 |
Abstract
Keywords
- Advanced Virgo detector, gravitational waves, interferometer, observing run 3, environmental monitoring, environment impact, sensitivity and duty cycle
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Classical and quantum gravity, Vol. 39, No. 23, 235009, 29.11.2022.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - The Virgo O3 run and the impact of the environment
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - the KAGRA Collaboration
AU - Acernese, F.
AU - Agathos, M.
AU - Ain, A.
AU - Albanesi, S.
AU - Allocca, A.
AU - Amato, A.
AU - Andrade, T.
AU - Andres, N.
AU - Andrés-Carcasona, M.
AU - Andrić, T.
AU - Ansoldi, S.
AU - Antier, S.
AU - Apostolatos, T.
AU - Appavuravther, E. Z.
AU - Arène, M.
AU - Arnaud, N.
AU - Assiduo, M.
AU - Assis De Souza Melo, S.
AU - Astone, P.
AU - Aubin, F.
AU - Avgitas, T.
AU - Babak, S.
AU - Badaracco, F.
AU - Bader, M. K.M.
AU - Bagnasco, S.
AU - Baird, J.
AU - Baka, T.
AU - Ballardin, G.
AU - Baltus, G.
AU - Banerjee, B.
AU - Barbieri, C.
AU - Barneo, P.
AU - Barone, F.
AU - Barsuglia, M.
AU - Barta, D.
AU - Basti, A.
AU - Bawaj, M.
AU - Bazzan, M.
AU - Beirnaert, F.
AU - Bejger, M.
AU - Belahcene, I.
AU - Benedetto, V.
AU - Berbel, M.
AU - Bernuzzi, S.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Bhardwaj, U.
AU - Bianchi, A.
AU - Bini, S.
AU - Danilishin, S.
AU - Mukund, Nikhil
N1 - Funding Information: The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Spanish Agencia Estatal de Investigación, the Consellera d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science (FNP), the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the European Commission. The authors gratefully acknowledge the support of the NSF, STFC, INFN, CNRS and Nikhef for provision of computational resources. We would like to thank all of the essential workers who put their health at risk during the COVID-19 pandemic, without whom we would not have been able to complete this work.
PY - 2022/11/29
Y1 - 2022/11/29
N2 - Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers.
AB - Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers.
KW - Advanced Virgo detector
KW - gravitational waves
KW - interferometer
KW - observing run 3
KW - environmental monitoring
KW - environment impact
KW - sensitivity and duty cycle
UR - http://www.scopus.com/inward/record.url?scp=85144286268&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2203.04014
DO - 10.48550/arXiv.2203.04014
M3 - Article
VL - 39
JO - Classical and quantum gravity
JF - Classical and quantum gravity
SN - 0264-9381
IS - 23
M1 - 235009
ER -