The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Yishen Zhang
  • Bernard Charlier
  • Stephanie B. Krein
  • Timothy L. Grove
  • Olivier Namur
  • Francois Holtz

External Research Organisations

  • KU Leuven
  • Rice University
  • University of Liege
  • Massachusetts Institute of Technology
View graph of relations

Details

Original languageEnglish
Article number118989
JournalEarth and Planetary Science Letters
Volume646
Early online date16 Sept 2024
Publication statusPublished - 15 Nov 2024

Abstract

The latest stages of the lunar magma ocean (LMO) crystallization led to the formation of ilmenite-bearing cumulates and urKREEP, residual melts enriched in K, rare earth elements (REEs), P, and other incompatible elements. Those highly evolved lithologies had major impacts on the petrogenesis of lunar volcanic rocks and the compositional diversity of post-LMO magmatism resulting from mantle remelting. Here, we present new experimental results constraining the composition of the very last liquids produced during LMO crystallization. To test the potential role of silicate liquid immiscibility in the formation of urKREEP, synthetic samples representative of residual melts of bulk Moon compositions were placed in double platinum-graphite capsules at 1020–980 °C and 0.08–0.10 GPa in an internally-heated pressure vessel. The produced silicate liquids are multiply saturated with plagioclase, augite, silica phases, and ilmenite (± fayalitic olivine ± pigeonite). Our experiments show that the liquid line of descent reaches a two-liquid field at 1000 °C and >97% crystallization for a range of whole-Moon compositions. Under these conditions, a small proportion of silica-rich melt (70.0–71.4 wt.% SiO2, 6.4–7.3 wt.% FeO, 5.4–6.1 wt.% K2O, 0.2–0.3 wt.% P2O5) coexists within an abundant Fe-rich melt (42.6–44.1 wt.% SiO2, 27.6–28.8 wt.% FeO, 0.9–1.0 wt.% K2O, 2.8–3.2 wt.% P2O5) with sharp two-liquid interfaces. Our experimental results also constrain the relative onset of ilmenite crystallization compared to the development of immiscibility and indicate that an ilmenite-bearing layer formed in the lunar interior before immiscibility was attained. Using a self-consistent physicochemical LMO model, we constrain the thickness and depth of the ilmenite-bearing layer during LMO differentiation. The immiscible K-Si-rich and P-Fe-rich melts together also produced an immiscible urKREEP layer ∼2–6 km thick and ∼30–50 km deep depending on the trapped liquid fraction in the cumulate column (≤10%) and the thickness of the buoyant anorthosite crust (30–50 km). We provide constraints on the relationship between the compositions of immiscible urKREEP melts and those of KREEPy rocks. By modeling the mixing of KREEP-poor basalt and the immiscible melt pairs, we reproduce the K and P enrichments and apparent decoupling of K from P in KREEPy rocks. Our results highlight that processes such as the assimilation of evolved heterogeneous mantle lithologies may be involved in hybridization during post-LMO magmatism. The immiscible K-Si-rich lithology may also have contributed to lunar silicic magmatism.

Keywords

    Differentiation, Ilmenite, KREEP basalt, Liquid immiscibility, Lunar magma ocean

ASJC Scopus subject areas

Cite this

The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP. / Zhang, Yishen; Charlier, Bernard; Krein, Stephanie B. et al.
In: Earth and Planetary Science Letters, Vol. 646, 118989, 15.11.2024.

Research output: Contribution to journalArticleResearchpeer review

Zhang Y, Charlier B, Krein SB, Grove TL, Namur O, Holtz F. The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP. Earth and Planetary Science Letters. 2024 Nov 15;646:118989. Epub 2024 Sept 16. doi: 10.1016/j.epsl.2024.118989
Download
@article{941db87eba7544da87b68a63ef4fd44a,
title = "The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP",
abstract = "The latest stages of the lunar magma ocean (LMO) crystallization led to the formation of ilmenite-bearing cumulates and urKREEP, residual melts enriched in K, rare earth elements (REEs), P, and other incompatible elements. Those highly evolved lithologies had major impacts on the petrogenesis of lunar volcanic rocks and the compositional diversity of post-LMO magmatism resulting from mantle remelting. Here, we present new experimental results constraining the composition of the very last liquids produced during LMO crystallization. To test the potential role of silicate liquid immiscibility in the formation of urKREEP, synthetic samples representative of residual melts of bulk Moon compositions were placed in double platinum-graphite capsules at 1020–980 °C and 0.08–0.10 GPa in an internally-heated pressure vessel. The produced silicate liquids are multiply saturated with plagioclase, augite, silica phases, and ilmenite (± fayalitic olivine ± pigeonite). Our experiments show that the liquid line of descent reaches a two-liquid field at 1000 °C and >97% crystallization for a range of whole-Moon compositions. Under these conditions, a small proportion of silica-rich melt (70.0–71.4 wt.% SiO2, 6.4–7.3 wt.% FeO, 5.4–6.1 wt.% K2O, 0.2–0.3 wt.% P2O5) coexists within an abundant Fe-rich melt (42.6–44.1 wt.% SiO2, 27.6–28.8 wt.% FeO, 0.9–1.0 wt.% K2O, 2.8–3.2 wt.% P2O5) with sharp two-liquid interfaces. Our experimental results also constrain the relative onset of ilmenite crystallization compared to the development of immiscibility and indicate that an ilmenite-bearing layer formed in the lunar interior before immiscibility was attained. Using a self-consistent physicochemical LMO model, we constrain the thickness and depth of the ilmenite-bearing layer during LMO differentiation. The immiscible K-Si-rich and P-Fe-rich melts together also produced an immiscible urKREEP layer ∼2–6 km thick and ∼30–50 km deep depending on the trapped liquid fraction in the cumulate column (≤10%) and the thickness of the buoyant anorthosite crust (30–50 km). We provide constraints on the relationship between the compositions of immiscible urKREEP melts and those of KREEPy rocks. By modeling the mixing of KREEP-poor basalt and the immiscible melt pairs, we reproduce the K and P enrichments and apparent decoupling of K from P in KREEPy rocks. Our results highlight that processes such as the assimilation of evolved heterogeneous mantle lithologies may be involved in hybridization during post-LMO magmatism. The immiscible K-Si-rich lithology may also have contributed to lunar silicic magmatism.",
keywords = "Differentiation, Ilmenite, KREEP basalt, Liquid immiscibility, Lunar magma ocean",
author = "Yishen Zhang and Bernard Charlier and Krein, {Stephanie B.} and Grove, {Timothy L.} and Olivier Namur and Francois Holtz",
note = "Publisher Copyright: {\textcopyright} 2024 Elsevier B.V.",
year = "2024",
month = nov,
day = "15",
doi = "10.1016/j.epsl.2024.118989",
language = "English",
volume = "646",
journal = "Earth and Planetary Science Letters",
issn = "0012-821X",
publisher = "Elsevier BV",

}

Download

TY - JOUR

T1 - The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP

AU - Zhang, Yishen

AU - Charlier, Bernard

AU - Krein, Stephanie B.

AU - Grove, Timothy L.

AU - Namur, Olivier

AU - Holtz, Francois

N1 - Publisher Copyright: © 2024 Elsevier B.V.

PY - 2024/11/15

Y1 - 2024/11/15

N2 - The latest stages of the lunar magma ocean (LMO) crystallization led to the formation of ilmenite-bearing cumulates and urKREEP, residual melts enriched in K, rare earth elements (REEs), P, and other incompatible elements. Those highly evolved lithologies had major impacts on the petrogenesis of lunar volcanic rocks and the compositional diversity of post-LMO magmatism resulting from mantle remelting. Here, we present new experimental results constraining the composition of the very last liquids produced during LMO crystallization. To test the potential role of silicate liquid immiscibility in the formation of urKREEP, synthetic samples representative of residual melts of bulk Moon compositions were placed in double platinum-graphite capsules at 1020–980 °C and 0.08–0.10 GPa in an internally-heated pressure vessel. The produced silicate liquids are multiply saturated with plagioclase, augite, silica phases, and ilmenite (± fayalitic olivine ± pigeonite). Our experiments show that the liquid line of descent reaches a two-liquid field at 1000 °C and >97% crystallization for a range of whole-Moon compositions. Under these conditions, a small proportion of silica-rich melt (70.0–71.4 wt.% SiO2, 6.4–7.3 wt.% FeO, 5.4–6.1 wt.% K2O, 0.2–0.3 wt.% P2O5) coexists within an abundant Fe-rich melt (42.6–44.1 wt.% SiO2, 27.6–28.8 wt.% FeO, 0.9–1.0 wt.% K2O, 2.8–3.2 wt.% P2O5) with sharp two-liquid interfaces. Our experimental results also constrain the relative onset of ilmenite crystallization compared to the development of immiscibility and indicate that an ilmenite-bearing layer formed in the lunar interior before immiscibility was attained. Using a self-consistent physicochemical LMO model, we constrain the thickness and depth of the ilmenite-bearing layer during LMO differentiation. The immiscible K-Si-rich and P-Fe-rich melts together also produced an immiscible urKREEP layer ∼2–6 km thick and ∼30–50 km deep depending on the trapped liquid fraction in the cumulate column (≤10%) and the thickness of the buoyant anorthosite crust (30–50 km). We provide constraints on the relationship between the compositions of immiscible urKREEP melts and those of KREEPy rocks. By modeling the mixing of KREEP-poor basalt and the immiscible melt pairs, we reproduce the K and P enrichments and apparent decoupling of K from P in KREEPy rocks. Our results highlight that processes such as the assimilation of evolved heterogeneous mantle lithologies may be involved in hybridization during post-LMO magmatism. The immiscible K-Si-rich lithology may also have contributed to lunar silicic magmatism.

AB - The latest stages of the lunar magma ocean (LMO) crystallization led to the formation of ilmenite-bearing cumulates and urKREEP, residual melts enriched in K, rare earth elements (REEs), P, and other incompatible elements. Those highly evolved lithologies had major impacts on the petrogenesis of lunar volcanic rocks and the compositional diversity of post-LMO magmatism resulting from mantle remelting. Here, we present new experimental results constraining the composition of the very last liquids produced during LMO crystallization. To test the potential role of silicate liquid immiscibility in the formation of urKREEP, synthetic samples representative of residual melts of bulk Moon compositions were placed in double platinum-graphite capsules at 1020–980 °C and 0.08–0.10 GPa in an internally-heated pressure vessel. The produced silicate liquids are multiply saturated with plagioclase, augite, silica phases, and ilmenite (± fayalitic olivine ± pigeonite). Our experiments show that the liquid line of descent reaches a two-liquid field at 1000 °C and >97% crystallization for a range of whole-Moon compositions. Under these conditions, a small proportion of silica-rich melt (70.0–71.4 wt.% SiO2, 6.4–7.3 wt.% FeO, 5.4–6.1 wt.% K2O, 0.2–0.3 wt.% P2O5) coexists within an abundant Fe-rich melt (42.6–44.1 wt.% SiO2, 27.6–28.8 wt.% FeO, 0.9–1.0 wt.% K2O, 2.8–3.2 wt.% P2O5) with sharp two-liquid interfaces. Our experimental results also constrain the relative onset of ilmenite crystallization compared to the development of immiscibility and indicate that an ilmenite-bearing layer formed in the lunar interior before immiscibility was attained. Using a self-consistent physicochemical LMO model, we constrain the thickness and depth of the ilmenite-bearing layer during LMO differentiation. The immiscible K-Si-rich and P-Fe-rich melts together also produced an immiscible urKREEP layer ∼2–6 km thick and ∼30–50 km deep depending on the trapped liquid fraction in the cumulate column (≤10%) and the thickness of the buoyant anorthosite crust (30–50 km). We provide constraints on the relationship between the compositions of immiscible urKREEP melts and those of KREEPy rocks. By modeling the mixing of KREEP-poor basalt and the immiscible melt pairs, we reproduce the K and P enrichments and apparent decoupling of K from P in KREEPy rocks. Our results highlight that processes such as the assimilation of evolved heterogeneous mantle lithologies may be involved in hybridization during post-LMO magmatism. The immiscible K-Si-rich lithology may also have contributed to lunar silicic magmatism.

KW - Differentiation

KW - Ilmenite

KW - KREEP basalt

KW - Liquid immiscibility

KW - Lunar magma ocean

UR - http://www.scopus.com/inward/record.url?scp=85203800657&partnerID=8YFLogxK

U2 - 10.1016/j.epsl.2024.118989

DO - 10.1016/j.epsl.2024.118989

M3 - Article

AN - SCOPUS:85203800657

VL - 646

JO - Earth and Planetary Science Letters

JF - Earth and Planetary Science Letters

SN - 0012-821X

M1 - 118989

ER -

By the same author(s)