Loading [MathJax]/extensions/tex2jax.js

The twisted forms of a semisimple group over an 𝔽 q -curve

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Rony Avraham Bitan
  • Ralf Köhl
  • Claudia Schoemann

Research Organisations

External Research Organisations

  • Afeka Tel Aviv Academic College of Engineering
  • Justus Liebig University Giessen

Details

Original languageEnglish
Pages (from-to)17-38
Number of pages22
JournalJournal de Theorie des Nombres de Bordeaux
Volume33
Issue number1
Publication statusPublished - 21 May 2021

Abstract

Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G).

Keywords

    Hasse principle, Mots-clefs. Class number, Tamagawa number, étale cohomology

ASJC Scopus subject areas

Cite this

The twisted forms of a semisimple group over an 𝔽 q -curve. / Bitan, Rony Avraham; Köhl, Ralf; Schoemann, Claudia.
In: Journal de Theorie des Nombres de Bordeaux, Vol. 33, No. 1, 21.05.2021, p. 17-38.

Research output: Contribution to journalArticleResearchpeer review

Bitan RA, Köhl R, Schoemann C. The twisted forms of a semisimple group over an 𝔽 q -curve. Journal de Theorie des Nombres de Bordeaux. 2021 May 21;33(1):17-38. doi: 10.5802/jtnb.1150
Bitan, Rony Avraham ; Köhl, Ralf ; Schoemann, Claudia. / The twisted forms of a semisimple group over an 𝔽 q -curve. In: Journal de Theorie des Nombres de Bordeaux. 2021 ; Vol. 33, No. 1. pp. 17-38.
Download
@article{e2023a83f2b742158a33912ce814f98d,
title = "The twisted forms of a semisimple group over an 픽 q -curve",
abstract = "Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G). ",
keywords = "Hasse principle, Mots-clefs. Class number, Tamagawa number, {\'e}tale cohomology",
author = "Bitan, {Rony Avraham} and Ralf K{\"o}hl and Claudia Schoemann",
year = "2021",
month = may,
day = "21",
doi = "10.5802/jtnb.1150",
language = "English",
volume = "33",
pages = "17--38",
journal = "Journal de Theorie des Nombres de Bordeaux",
issn = "1246-7405",
publisher = "Universite de Bordeaux",
number = "1",

}

Download

TY - JOUR

T1 - The twisted forms of a semisimple group over an 픽 q -curve

AU - Bitan, Rony Avraham

AU - Köhl, Ralf

AU - Schoemann, Claudia

PY - 2021/5/21

Y1 - 2021/5/21

N2 - Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G).

AB - Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G).

KW - Hasse principle

KW - Mots-clefs. Class number

KW - Tamagawa number

KW - étale cohomology

UR - http://www.scopus.com/inward/record.url?scp=85109094700&partnerID=8YFLogxK

U2 - 10.5802/jtnb.1150

DO - 10.5802/jtnb.1150

M3 - Article

VL - 33

SP - 17

EP - 38

JO - Journal de Theorie des Nombres de Bordeaux

JF - Journal de Theorie des Nombres de Bordeaux

SN - 1246-7405

IS - 1

ER -