Details
Original language | English |
---|---|
Pages (from-to) | 17-38 |
Number of pages | 22 |
Journal | Journal de Theorie des Nombres de Bordeaux |
Volume | 33 |
Issue number | 1 |
Publication status | Published - 21 May 2021 |
Abstract
Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G).
Keywords
- Hasse principle, Mots-clefs. Class number, Tamagawa number, étale cohomology
ASJC Scopus subject areas
- Mathematics(all)
- Algebra and Number Theory
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal de Theorie des Nombres de Bordeaux, Vol. 33, No. 1, 21.05.2021, p. 17-38.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - The twisted forms of a semisimple group over an 픽 q -curve
AU - Bitan, Rony Avraham
AU - Köhl, Ralf
AU - Schoemann, Claudia
PY - 2021/5/21
Y1 - 2021/5/21
N2 - Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G).
AB - Let C be a smooth, projective and geometrically connected curve defined over a finite field F q . Given a semisimple C −S-group scheme G where S is a finite set of closed points of C, we describe the set of (O S-classes of) twisted forms of G in terms of geometric invariants of its fundamental group F (G).
KW - Hasse principle
KW - Mots-clefs. Class number
KW - Tamagawa number
KW - étale cohomology
UR - http://www.scopus.com/inward/record.url?scp=85109094700&partnerID=8YFLogxK
U2 - 10.5802/jtnb.1150
DO - 10.5802/jtnb.1150
M3 - Article
VL - 33
SP - 17
EP - 38
JO - Journal de Theorie des Nombres de Bordeaux
JF - Journal de Theorie des Nombres de Bordeaux
SN - 1246-7405
IS - 1
ER -