Details
Original language | English |
---|---|
Publication status | E-pub ahead of print - 3 Oct 2023 |
Publication series
Name | ArXiv |
---|
Research Area (based on ÖFOS 2012)
- NATURAL SCIENCES
- Mathematics
- Mathematics
- Number theory
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
The singular series of a cubic form in many variables and a new proof of Davenport's Shrinking Lemma. / Bernert, Christian.
2023. (ArXiv).
2023. (ArXiv).
Research output: Working paper/Preprint › Preprint
Bernert, C. (2023). The singular series of a cubic form in many variables and a new proof of Davenport's Shrinking Lemma. (ArXiv). Advance online publication. https://doi.org/10.48550/arXiv.2310.02036
Bernert C. The singular series of a cubic form in many variables and a new proof of Davenport's Shrinking Lemma. 2023 Oct 3. (ArXiv). Epub 2023 Oct 3. doi: https://doi.org/10.48550/arXiv.2310.02036
Download
@techreport{cc8ee0acfef446d0bcc2140b0332b53a,
title = "The singular series of a cubic form in many variables and a new proof of Davenport's Shrinking Lemma",
author = "Christian Bernert",
year = "2023",
month = oct,
day = "3",
doi = "https://doi.org/10.48550/arXiv.2310.02036",
language = "English",
series = "ArXiv",
type = "WorkingPaper",
}
Download
TY - UNPB
T1 - The singular series of a cubic form in many variables and a new proof of Davenport's Shrinking Lemma
AU - Bernert, Christian
PY - 2023/10/3
Y1 - 2023/10/3
U2 - https://doi.org/10.48550/arXiv.2310.02036
DO - https://doi.org/10.48550/arXiv.2310.02036
M3 - Preprint
T3 - ArXiv
BT - The singular series of a cubic form in many variables and a new proof of Davenport's Shrinking Lemma
ER -