Details
Original language | English |
---|---|
Publication status | Published - 2015 |
Externally published | Yes |
Event | 20th International Conference on Composite Materials, ICCM 2015 - Copenhagen, Denmark Duration: 19 Jul 2015 → 24 Jul 2015 |
Conference
Conference | 20th International Conference on Composite Materials, ICCM 2015 |
---|---|
Country/Territory | Denmark |
City | Copenhagen |
Period | 19 Jul 2015 → 24 Jul 2015 |
Abstract
Today, fiber reinforced materials are present in many industrial applications to implement lightweight solutions. These materials are used for example in automotive, aerospace and medical sectors. In the last couple of years, fiber reinforced materials with a thermoplastic matrix have gained importance due to their thermo formability and good recyclability. Besides the joining of these materials by mechanical fasteners, they can also be joined by welding in order to generate complex parts. A new welding method for composites is laser transmission welding. This welding technique has high potential for excellent reproducibility, high flexibility, and automation. The weld seam quality of several kinds of thermoplastics can be affected by the moisture content of the matrix material. During laser transmission welding, both parts are heated up at the interface. Due to the process heat, moisture in the composite evaporates and can cause pores in the connection area. The authors investigated the influence of the moisture content on the weld seam quality of endless glass fiber reinforced polyetherimide (GF PEI) welded to GF PEI containing carbon black. Before welding, the material was conditioned in three different ways to generate “dry”, “wet” and “room humid” samples. With the materials, lap shear samples were produced with different welding parameters. The lap shear strength results were correlated to the moisture content and the utilized welding parameters. Furthermore, cross sections were prepared to determine the amount of pores in the joining zone and correlated to the lap shear strength results.
Keywords
- Composites, Fiber reinforced thermoplastics, Laser transmission welding, Moisture content
ASJC Scopus subject areas
- Engineering(all)
- General Engineering
- Materials Science(all)
- Ceramics and Composites
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2015. Paper presented at 20th International Conference on Composite Materials, ICCM 2015, Copenhagen, Denmark.
Research output: Contribution to conference › Paper › Research › peer review
}
TY - CONF
T1 - The influence of moisture content on the weld seam quality for laser welded thermoplastic composites
AU - Wippo, Verena
AU - Jaeschke, P.
AU - Suttmann, Oliver
AU - Overmeyer, Ludger
N1 - Funding information: The authors would like to thank the Federal Ministry for Economic Affairs and Energy (BMWI) for funding these investigations within the project KASI (FKZ: 20K1306J) of the German federal aeronautical research program.
PY - 2015
Y1 - 2015
N2 - Today, fiber reinforced materials are present in many industrial applications to implement lightweight solutions. These materials are used for example in automotive, aerospace and medical sectors. In the last couple of years, fiber reinforced materials with a thermoplastic matrix have gained importance due to their thermo formability and good recyclability. Besides the joining of these materials by mechanical fasteners, they can also be joined by welding in order to generate complex parts. A new welding method for composites is laser transmission welding. This welding technique has high potential for excellent reproducibility, high flexibility, and automation. The weld seam quality of several kinds of thermoplastics can be affected by the moisture content of the matrix material. During laser transmission welding, both parts are heated up at the interface. Due to the process heat, moisture in the composite evaporates and can cause pores in the connection area. The authors investigated the influence of the moisture content on the weld seam quality of endless glass fiber reinforced polyetherimide (GF PEI) welded to GF PEI containing carbon black. Before welding, the material was conditioned in three different ways to generate “dry”, “wet” and “room humid” samples. With the materials, lap shear samples were produced with different welding parameters. The lap shear strength results were correlated to the moisture content and the utilized welding parameters. Furthermore, cross sections were prepared to determine the amount of pores in the joining zone and correlated to the lap shear strength results.
AB - Today, fiber reinforced materials are present in many industrial applications to implement lightweight solutions. These materials are used for example in automotive, aerospace and medical sectors. In the last couple of years, fiber reinforced materials with a thermoplastic matrix have gained importance due to their thermo formability and good recyclability. Besides the joining of these materials by mechanical fasteners, they can also be joined by welding in order to generate complex parts. A new welding method for composites is laser transmission welding. This welding technique has high potential for excellent reproducibility, high flexibility, and automation. The weld seam quality of several kinds of thermoplastics can be affected by the moisture content of the matrix material. During laser transmission welding, both parts are heated up at the interface. Due to the process heat, moisture in the composite evaporates and can cause pores in the connection area. The authors investigated the influence of the moisture content on the weld seam quality of endless glass fiber reinforced polyetherimide (GF PEI) welded to GF PEI containing carbon black. Before welding, the material was conditioned in three different ways to generate “dry”, “wet” and “room humid” samples. With the materials, lap shear samples were produced with different welding parameters. The lap shear strength results were correlated to the moisture content and the utilized welding parameters. Furthermore, cross sections were prepared to determine the amount of pores in the joining zone and correlated to the lap shear strength results.
KW - Composites
KW - Fiber reinforced thermoplastics
KW - Laser transmission welding
KW - Moisture content
UR - http://www.scopus.com/inward/record.url?scp=84994026190&partnerID=8YFLogxK
M3 - Paper
T2 - 20th International Conference on Composite Materials, ICCM 2015
Y2 - 19 July 2015 through 24 July 2015
ER -