Details
Original language | English |
---|---|
Pages (from-to) | 28-37 |
Number of pages | 10 |
Journal | Journal of Engineering Materials and Technology, Transactions of the ASME |
Volume | 121 |
Issue number | 1 |
Publication status | Published - Jan 1999 |
Externally published | Yes |
Abstract
An experimental study was performed to determine the effect of aging on martensitic transformations in NiTi. Polycrystalline and single crystal NiTi ([100], [110], and [111] orientations) were both considered. Stress-induced transformations inpolycrystalline NiTi were found to closely resemble transformations in single crystals of the [110] and [111] orientations. Solutionized and over-aged single crystals exhibited a strong orientation dependence of the critical stress required to trigger the transformation, σcr. The Schmid law was able to accurately predict the orientation dependence of σcr in the solutionized and over-aged single crystals. Peak-aged single crystals demonstrated a much weaker orientation dependence of σcr and in general, the Schmid law was not obeyed. By considering the local stress fields outside of the semi-coherent precipitates, the decrease in the orientation dependence of σcr was accounted for. The martensite start temperatures, Ms, in aged single crystal and polycrystalline NiTi were much higher than in solutionized samples. In peak-aged NiTi the increase was primarily attributed to the local stress fields outside the coherent precipitates which create preferential nucleation sites for the martensite. In the over-aged NiTi the increase in Ms was primarily attributed to the decrease in the average Ni concentration of the matrix surrounding the coarsened precipitates.
ASJC Scopus subject areas
- Materials Science(all)
- General Materials Science
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Mechanics of Materials
- Engineering(all)
- Mechanical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 121, No. 1, 01.1999, p. 28-37.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi
T2 - Part II-discussion of experimental results
AU - Gall, Ken
AU - Sehitoglu, Huseyin
AU - Chumlyakov, Yuriy I.
AU - Kireeva, Irina V.
AU - Maier, Hans J.
PY - 1999/1
Y1 - 1999/1
N2 - An experimental study was performed to determine the effect of aging on martensitic transformations in NiTi. Polycrystalline and single crystal NiTi ([100], [110], and [111] orientations) were both considered. Stress-induced transformations inpolycrystalline NiTi were found to closely resemble transformations in single crystals of the [110] and [111] orientations. Solutionized and over-aged single crystals exhibited a strong orientation dependence of the critical stress required to trigger the transformation, σcr. The Schmid law was able to accurately predict the orientation dependence of σcr in the solutionized and over-aged single crystals. Peak-aged single crystals demonstrated a much weaker orientation dependence of σcr and in general, the Schmid law was not obeyed. By considering the local stress fields outside of the semi-coherent precipitates, the decrease in the orientation dependence of σcr was accounted for. The martensite start temperatures, Ms, in aged single crystal and polycrystalline NiTi were much higher than in solutionized samples. In peak-aged NiTi the increase was primarily attributed to the local stress fields outside the coherent precipitates which create preferential nucleation sites for the martensite. In the over-aged NiTi the increase in Ms was primarily attributed to the decrease in the average Ni concentration of the matrix surrounding the coarsened precipitates.
AB - An experimental study was performed to determine the effect of aging on martensitic transformations in NiTi. Polycrystalline and single crystal NiTi ([100], [110], and [111] orientations) were both considered. Stress-induced transformations inpolycrystalline NiTi were found to closely resemble transformations in single crystals of the [110] and [111] orientations. Solutionized and over-aged single crystals exhibited a strong orientation dependence of the critical stress required to trigger the transformation, σcr. The Schmid law was able to accurately predict the orientation dependence of σcr in the solutionized and over-aged single crystals. Peak-aged single crystals demonstrated a much weaker orientation dependence of σcr and in general, the Schmid law was not obeyed. By considering the local stress fields outside of the semi-coherent precipitates, the decrease in the orientation dependence of σcr was accounted for. The martensite start temperatures, Ms, in aged single crystal and polycrystalline NiTi were much higher than in solutionized samples. In peak-aged NiTi the increase was primarily attributed to the local stress fields outside the coherent precipitates which create preferential nucleation sites for the martensite. In the over-aged NiTi the increase in Ms was primarily attributed to the decrease in the average Ni concentration of the matrix surrounding the coarsened precipitates.
UR - http://www.scopus.com/inward/record.url?scp=0032761964&partnerID=8YFLogxK
U2 - 10.1115/1.2815995
DO - 10.1115/1.2815995
M3 - Article
AN - SCOPUS:0032761964
VL - 121
SP - 28
EP - 37
JO - Journal of Engineering Materials and Technology, Transactions of the ASME
JF - Journal of Engineering Materials and Technology, Transactions of the ASME
SN - 0094-4289
IS - 1
ER -