Details
Original language | English |
---|---|
Article number | 2150007 |
Journal | International Journal of Mathematics |
Volume | 32 |
Issue number | 2 |
Publication status | Published - 6 Jan 2021 |
Abstract
In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful.
Keywords
- derived categories, Fourier-Mukai transforms, Hilbert schemes, moduli spaces, vector bundles
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Journal of Mathematics, Vol. 32, No. 2, 2150007, 06.01.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - The Fourier-Mukai transform of a universal family of stable vector bundles
AU - Reede, Fabian
PY - 2021/1/6
Y1 - 2021/1/6
N2 - In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful.
AB - In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful.
KW - derived categories
KW - Fourier-Mukai transforms
KW - Hilbert schemes
KW - moduli spaces
KW - vector bundles
UR - http://www.scopus.com/inward/record.url?scp=85099338061&partnerID=8YFLogxK
U2 - 10.1142/S0129167X21500075
DO - 10.1142/S0129167X21500075
M3 - Article
AN - SCOPUS:85099338061
VL - 32
JO - International Journal of Mathematics
JF - International Journal of Mathematics
SN - 0129-167X
IS - 2
M1 - 2150007
ER -