Details
Original language | English |
---|---|
Article number | 1 |
Number of pages | 37 |
Journal | EPJ Quantum Technology |
Volume | 8 |
Issue number | 1 |
Publication status | Published - 4 Jan 2021 |
Abstract
Microgravity eases several constraints limiting experiments with ultracold and condensed atoms on ground. It enables extended times of flight without suspension and eliminates the gravitational sag for trapped atoms. These advantages motivated numerous initiatives to adapt and operate experimental setups on microgravity platforms. We describe the design of the payload, motivations for design choices, and capabilities of the Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL), a NASA-DLR collaboration. BECCAL builds on the heritage of previous devices operated in microgravity, features rubidium and potassium, multiple options for magnetic and optical trapping, different methods for coherent manipulation, and will offer new perspectives for experiments on quantum optics, atom optics, and atom interferometry in the unique microgravity environment on board the International Space Station.
Keywords
- physics.atom-ph, cond-mat.quant-gas, Atom interferometry, Atom optics, Quantum optics, International Space Station, Microgravity, Bose-Einstein condensate
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Electrical and Electronic Engineering
- Engineering(all)
- Control and Systems Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: EPJ Quantum Technology, Vol. 8, No. 1, 1, 04.01.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - The Bose-Einstein Condensate and Cold Atom Laboratory
AU - Frye, Kai
AU - Abend, Sven
AU - Bartosch, Wolfgang
AU - Bawamia, Ahmad
AU - Becker, Dennis
AU - Blume, Holger
AU - Braxmaier, Claus
AU - Chiow, Sheng-Wey
AU - Efremov, Maxim A.
AU - Ertmer, Wolfgang
AU - Fierlinger, Peter
AU - Franz, Tobias
AU - Gaaloul, Naceur
AU - Grosse, Jens
AU - Grzeschik, Christoph
AU - Hellmig, Ortwin
AU - Henderson, Victoria A.
AU - Herr, Waldemar
AU - Israelsson, Ulf
AU - Kohel, James
AU - Krutzik, Markus
AU - Kürbis, Christian
AU - Lämmerzahl, Claus
AU - List, Meike
AU - Lüdtke, Daniel
AU - Lundblad, Nathan
AU - Marburger, J. Pierre
AU - Meister, Matthias
AU - Mihm, Moritz
AU - Müller, Holger
AU - Müntinga, Hauke
AU - Nepal, Ayush M.
AU - Oberschulte, Tim
AU - Papakonstantinou, Alexandros
AU - Perovšek, Jaka
AU - Peters, Achim
AU - Prat, Arnau
AU - Rasel, Ernst M.
AU - Roura, Albert
AU - Sbroscia, Matteo
AU - Schleich, Wolfgang P.
AU - Schubert, Christian
AU - Seidel, Stephan T.
AU - Sommer, Jan
AU - Spindeldreier, Christian
AU - Stamper-Kurn, Dan
AU - Stuhl, Benjamin K.
AU - Warner, Marvin
AU - Wendrich, Thijs
AU - Wenzlawski, André
AU - Wicht, Andreas
AU - Windpassinger, Patrick
AU - Yu, Nan
AU - Wörner, Lisa
N1 - The herein described project is a bilateral collaboration between NASA and DLR, both contributing to the scientific and operational organization. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos. DLR50WP1431-1435, 50WM1131-1137, 50MW0940, 50WM1240, 50WM1556, 50WP1700-1706, 50WP1806, 50WP1836, 50WM1861, 50WM1955, 50WM1956, 50RK1957, 50WM2060, by “Niedersächsisches Vorab” through the “Quantum- and Nano-Metrology (QUANOMET)” initiative within the project QT3, through the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2123 QuantumFrontiers, Project-ID 390837967, and through “Förderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR Institutes (DLR-SI and DLR-QT). MAE thanks the Center for Integrated Quantum Science and Technology (IQST) for financial support. The project was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The team acknowledges the contributions from NASA and their aid in adapting the payload to the needs of the International Space Station. We especially acknowledge the contributions from NASA Headquarters, Glenn Research Center, and Johnson Space Center. Open Access funding enabled and organized by Projekt DEAL.
PY - 2021/1/4
Y1 - 2021/1/4
N2 - Microgravity eases several constraints limiting experiments with ultracold and condensed atoms on ground. It enables extended times of flight without suspension and eliminates the gravitational sag for trapped atoms. These advantages motivated numerous initiatives to adapt and operate experimental setups on microgravity platforms. We describe the design of the payload, motivations for design choices, and capabilities of the Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL), a NASA-DLR collaboration. BECCAL builds on the heritage of previous devices operated in microgravity, features rubidium and potassium, multiple options for magnetic and optical trapping, different methods for coherent manipulation, and will offer new perspectives for experiments on quantum optics, atom optics, and atom interferometry in the unique microgravity environment on board the International Space Station.
AB - Microgravity eases several constraints limiting experiments with ultracold and condensed atoms on ground. It enables extended times of flight without suspension and eliminates the gravitational sag for trapped atoms. These advantages motivated numerous initiatives to adapt and operate experimental setups on microgravity platforms. We describe the design of the payload, motivations for design choices, and capabilities of the Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL), a NASA-DLR collaboration. BECCAL builds on the heritage of previous devices operated in microgravity, features rubidium and potassium, multiple options for magnetic and optical trapping, different methods for coherent manipulation, and will offer new perspectives for experiments on quantum optics, atom optics, and atom interferometry in the unique microgravity environment on board the International Space Station.
KW - physics.atom-ph
KW - cond-mat.quant-gas
KW - Atom interferometry
KW - Atom optics
KW - Quantum optics
KW - International Space Station
KW - Microgravity
KW - Bose-Einstein condensate
UR - http://www.scopus.com/inward/record.url?scp=85098659103&partnerID=8YFLogxK
U2 - 10.1140/epjqt/s40507-020-00090-8
DO - 10.1140/epjqt/s40507-020-00090-8
M3 - Article
VL - 8
JO - EPJ Quantum Technology
JF - EPJ Quantum Technology
IS - 1
M1 - 1
ER -