Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1

Research output: Contribution to journalArticleResearchpeer review

Authors

  • The LIGO Scientific Collaboration
  • The Virgo Collaboration
  • Sukanta Bose
  • D. D. Brown
  • Y. B. Chen
  • Manuela Hanke
  • J. Henning
  • M. T. Hübner
  • Sanjeev Kumar
  • R. N. Lang
  • H. K. Lee
  • H. M. Lee
  • H. W. Lee
  • J. Lee
  • X. Li
  • J. R. Sanders
  • Patricia Schmidt
  • L. Sun
  • Y. F. Wang
  • D. S. Wu
  • L. Zhang
  • X. J. Zhu
  • Minchuan Zhou
  • Gerald Bergmann
  • Aparna Bisht
  • Nina Bode
  • P. Booker
  • Marc Brinkmann
  • M. Cabero
  • O. de Varona
  • T. Dent
  • S. Doravari
  • S. Hochheim
  • J. Junker
  • Stefan Kaufer
  • R. Kirchhoff
  • Patrick Koch
  • N. Koper
  • S. M. Köhlenbeck
  • Volker Kringel
  • G. Kuehn
  • Kai S. Karvinen
  • S. Khan
  • S. Leavey
  • J. Lehmann
  • James Lough
  • Moritz Mehmet
  • Arunava Mukherjee
  • Nikhil Mukund
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • A. Rüdiger
  • M. Phelps
  • O. Puncken
  • Emil Schreiber
  • B. W. Schulte
  • Y. Setyawati
  • M. Standke
  • M. Steinke
  • Fabian Thies
  • Michael Weinert
  • F. Wellmann
  • Peter Weßels
  • W. Winkler
  • J. Woehler

External Research Organisations

  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • Carson College of Business
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Adelaide
  • Monash University
  • Tata Institute of Fundamental Research (TIFR HYD)
  • LIGO Laboratory
  • Inje University
  • California Institute of Caltech (Caltech)
  • Radboud University Nijmegen (RU)
  • University of Melbourne
  • University of Texas Rio Grande Valley
  • Northwestern University
View graph of relations

Details

Original languageEnglish
Article number104036
Number of pages30
JournalPhysical Review D
Volume100
Issue number10
Publication statusPublished - 20 Nov 2019

Abstract

The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg≤4.7×10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.

ASJC Scopus subject areas

Cite this

Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. / The LIGO Scientific Collaboration; The Virgo Collaboration; Bose, Sukanta et al.
In: Physical Review D, Vol. 100, No. 10, 104036, 20.11.2019.

Research output: Contribution to journalArticleResearchpeer review

The LIGO Scientific Collaboration, The Virgo Collaboration, Bose, S, Brown, DD, Chen, YB, Hanke, M, Henning, J, Hübner, MT, Kumar, S, Lang, RN, Lee, HK, Lee, HM, Lee, HW, Lee, J, Li, X, Sanders, JR, Schmidt, P, Sun, L, Wang, YF, Wu, DS, Zhang, L, Zhu, XJ, Zhou, M, Bergmann, G, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, de Varona, O, Dent, T, Doravari, S, Hochheim, S, Junker, J, Kaufer, S, Kirchhoff, R, Koch, P, Koper, N, Köhlenbeck, SM, Kringel, V, Kuehn, G, Karvinen, KS, Khan, S, Leavey, S, Lehmann, J, Lough, J, Mehmet, M, Mukherjee, A, Mukund, N, Nery, M, Ohme, F, Oppermann, P, Rüdiger, A, Phelps, M, Puncken, O, Schreiber, E, Schulte, BW, Setyawati, Y, Standke, M, Steinke, M, Thies, F, Weinert, M, Wellmann, F, Weßels, P, Winkler, W & Woehler, J 2019, 'Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1', Physical Review D, vol. 100, no. 10, 104036. https://doi.org/10.1103/PhysRevD.100.104036, https://doi.org/10.15488/12071
The LIGO Scientific Collaboration, The Virgo Collaboration, Bose, S., Brown, D. D., Chen, Y. B., Hanke, M., Henning, J., Hübner, M. T., Kumar, S., Lang, R. N., Lee, H. K., Lee, H. M., Lee, H. W., Lee, J., Li, X., Sanders, J. R., Schmidt, P., Sun, L., Wang, Y. F., ... Woehler, J. (2019). Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 100(10), Article 104036. https://doi.org/10.1103/PhysRevD.100.104036, https://doi.org/10.15488/12071
The LIGO Scientific Collaboration, The Virgo Collaboration, Bose S, Brown DD, Chen YB, Hanke M et al. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D. 2019 Nov 20;100(10):104036. doi: 10.1103/PhysRevD.100.104036, 10.15488/12071
The LIGO Scientific Collaboration ; The Virgo Collaboration ; Bose, Sukanta et al. / Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. In: Physical Review D. 2019 ; Vol. 100, No. 10.
Download
@article{a352aa147c9549d39cb02509ba437aeb,
title = "Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1",
abstract = "The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg≤4.7×10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and B. P. Abbott and R. Abbott and T. D. Abbott and S. Abraham and F. Acernese and K. Ackley and C. Adams and R. X. Adhikari and V. B. Adya and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and O. D. Aguiar and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and M. A. Aloy and P. A. Altin and A. Amato and A. Ananyeva and S. B. Anderson and W. G. Anderson and S. V. Angelova and S. Antier and S. Appert and K. Arai and M. C. Araya and J. S. Areeda and M. Ar{\`e}ne and N. Arnaud and K. G. Arun and S. Ascenzi and G. Ashton and S. M. Aston and P. Astone and F. Aubin and S. L. Danilishin and K. Danzmann and M. Heurs and A. Hreibi and H. L{\"u}ck and D. Steinmeyer and H. Vahlbruch and L.-w. Wei and D. M. Wilken and B. Willke and H. Wittel and Sukanta Bose and Brown, {D. D.} and Chen, {Y. B.} and Manuela Hanke and J. Henning and H{\"u}bner, {M. T.} and Sanjeev Kumar and Lang, {R. N.} and Lee, {H. K.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and X. Li and Sanders, {J. R.} and Patricia Schmidt and L. Sun and Wang, {Y. F.} and Wu, {D. S.} and L. Zhang and Zhu, {X. J.} and Minchuan Zhou and Gerald Bergmann and Aparna Bisht and Nina Bode and P. Booker and Marc Brinkmann and M. Cabero and {de Varona}, O. and T. Dent and S. Doravari and S. Hochheim and J. Junker and Stefan Kaufer and R. Kirchhoff and Patrick Koch and N. Koper and K{\"o}hlenbeck, {S. M.} and Volker Kringel and G. Kuehn and Karvinen, {Kai S.} and S. Khan and S. Leavey and J. Lehmann and James Lough and Moritz Mehmet and Arunava Mukherjee and Nikhil Mukund and M. Nery and F. Ohme and P. Oppermann and A. R{\"u}diger and M. Phelps and O. Puncken and Emil Schreiber and Schulte, {B. W.} and Y. Setyawati and M. Standke and M. Steinke and Fabian Thies and Michael Weinert and F. Wellmann and Peter We{\ss}els and W. Winkler and J. Woehler",
year = "2019",
month = nov,
day = "20",
doi = "10.1103/PhysRevD.100.104036",
language = "English",
volume = "100",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "10",

}

Download

TY - JOUR

T1 - Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, G.

AU - Allocca, A.

AU - Aloy, M. A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Aston, S. M.

AU - Astone, P.

AU - Aubin, F.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Heurs, M.

AU - Hreibi, A.

AU - Lück, H.

AU - Steinmeyer, D.

AU - Vahlbruch, H.

AU - Wei, L.-w.

AU - Wilken, D. M.

AU - Willke, B.

AU - Wittel, H.

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. B.

AU - Hanke, Manuela

AU - Henning, J.

AU - Hübner, M. T.

AU - Kumar, Sanjeev

AU - Lang, R. N.

AU - Lee, H. K.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Li, X.

AU - Sanders, J. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - Wang, Y. F.

AU - Wu, D. S.

AU - Zhang, L.

AU - Zhu, X. J.

AU - Zhou, Minchuan

AU - Bergmann, Gerald

AU - Bisht, Aparna

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, Marc

AU - Cabero, M.

AU - de Varona, O.

AU - Dent, T.

AU - Doravari, S.

AU - Hochheim, S.

AU - Junker, J.

AU - Kaufer, Stefan

AU - Kirchhoff, R.

AU - Koch, Patrick

AU - Koper, N.

AU - Köhlenbeck, S. M.

AU - Kringel, Volker

AU - Kuehn, G.

AU - Karvinen, Kai S.

AU - Khan, S.

AU - Leavey, S.

AU - Lehmann, J.

AU - Lough, James

AU - Mehmet, Moritz

AU - Mukherjee, Arunava

AU - Mukund, Nikhil

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Rüdiger, A.

AU - Phelps, M.

AU - Puncken, O.

AU - Schreiber, Emil

AU - Schulte, B. W.

AU - Setyawati, Y.

AU - Standke, M.

AU - Steinke, M.

AU - Thies, Fabian

AU - Weinert, Michael

AU - Wellmann, F.

AU - Weßels, Peter

AU - Winkler, W.

AU - Woehler, J.

PY - 2019/11/20

Y1 - 2019/11/20

N2 - The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg≤4.7×10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.

AB - The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg≤4.7×10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.

UR - http://www.scopus.com/inward/record.url?scp=85076379737&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.100.104036

DO - 10.1103/PhysRevD.100.104036

M3 - Article

VL - 100

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 10

M1 - 104036

ER -

By the same author(s)