Technical research priorities for big data

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

  • Edward Curry
  • Sonja Zillner
  • Andreas Metzger
  • Arne J. Berre
  • Sören Auer
  • Ray Walshe
  • Marija Despenic
  • Milan Petkovic
  • Dumitru Roman
  • Walter Waterfeld
  • Robert Seidl
  • Souleiman Hasan
  • Umair ul Hassan
  • Adegboyega Ojo

External Research Organisations

  • University of Galway
  • Siemens AG
  • University of Duisburg-Essen
  • SINTEF Digital
  • Dublin City University
  • ABN Amro Bank
  • Eindhoven University of Technology (TU/e)
  • Lucent
View graph of relations

Details

Original languageEnglish
Title of host publicationThe Elements of Big Data Value
Subtitle of host publicationFoundations of the Research and Innovation Ecosystem
PublisherSpringer International Publishing AG
Pages97-126
Number of pages30
ISBN (electronic)9783030681760
ISBN (print)9783030681753
Publication statusPublished - 2021

Abstract

To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data.

Keywords

    Data analytics, Data ecosystem, Data management, Data processing, Data protection, Data standardisation, Data visualisation, Research challenges, User interactions

ASJC Scopus subject areas

Cite this

Technical research priorities for big data. / Curry, Edward; Zillner, Sonja; Metzger, Andreas et al.
The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem. Springer International Publishing AG, 2021. p. 97-126.

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Curry, E, Zillner, S, Metzger, A, Berre, AJ, Auer, S, Walshe, R, Despenic, M, Petkovic, M, Roman, D, Waterfeld, W, Seidl, R, Hasan, S, ul Hassan, U & Ojo, A 2021, Technical research priorities for big data. in The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem. Springer International Publishing AG, pp. 97-126. https://doi.org/10.1007/978-3-030-68176-0_5
Curry, E., Zillner, S., Metzger, A., Berre, A. J., Auer, S., Walshe, R., Despenic, M., Petkovic, M., Roman, D., Waterfeld, W., Seidl, R., Hasan, S., ul Hassan, U., & Ojo, A. (2021). Technical research priorities for big data. In The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem (pp. 97-126). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-68176-0_5
Curry E, Zillner S, Metzger A, Berre AJ, Auer S, Walshe R et al. Technical research priorities for big data. In The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem. Springer International Publishing AG. 2021. p. 97-126 Epub 2021 Aug 1. doi: 10.1007/978-3-030-68176-0_5
Curry, Edward ; Zillner, Sonja ; Metzger, Andreas et al. / Technical research priorities for big data. The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem. Springer International Publishing AG, 2021. pp. 97-126
Download
@inbook{3db9b5ee925e41febb5a13dbe7242015,
title = "Technical research priorities for big data",
abstract = "To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data.",
keywords = "Data analytics, Data ecosystem, Data management, Data processing, Data protection, Data standardisation, Data visualisation, Research challenges, User interactions",
author = "Edward Curry and Sonja Zillner and Andreas Metzger and Berre, {Arne J.} and S{\"o}ren Auer and Ray Walshe and Marija Despenic and Milan Petkovic and Dumitru Roman and Walter Waterfeld and Robert Seidl and Souleiman Hasan and {ul Hassan}, Umair and Adegboyega Ojo",
note = "Acknowledgments: We greatly acknowledge the collective effort of the SRIA teams: Carlos A. Iglesias, Antonio Alfaro, Jesus Angel, S{\"o}ren Auer, Paolo Bellavista, Arne Berre, Freek Bomhof, Stuart Campbell, Geraud Canet, Giuseppa Caruso, Edward Curry, Paul Czech, Davide Dalle Carbonare, Nuria de Lama, Stefano de Panfilis, Thomas Delavallade, Marija Despenic, Ana Garcia Robles, Wolfgang Gerteis, Aris Gkoulalas-Divanis, Nuria Gomez, Paolo Gonzales, Thomas Hahn, Souleiman Hasan, Jim Keneally, Bjarne Kj{\ae}r Ersb{\o}ll, Bas Kotterink, Yannick Legr{\'e}, Yves Mabiala, Julie Marguerite, Dirk Mayer, Ernestina Menasalves, Andreas Metzger, Elisa Molino, Thierry Nagellen, Dalit Naor, Maria Perez, Milan Petkovic, Roberta Piscitelli, Klaus-Dieter Platte, Pierre Pleven, Dumitru Roman, Titi Roman, Alexandra Ros{\'e}n, Nikos Sarris, Stefano Scamuzzo, Simon Scerri, Corinna Schulze, Robert Seidl, Bj{\o}rn Skjellaug, Caj S{\"o}derg{\aa}rd, Claire Tonna, Francois Troussier, Colin Upstill, Josef Urban, Meilof Veeningen, Tonny Velin, Ray Walshe, Walter Waterfeld, Stefan Wrobel, and Sonja Zillner. ",
year = "2021",
doi = "10.1007/978-3-030-68176-0_5",
language = "English",
isbn = "9783030681753",
pages = "97--126",
booktitle = "The Elements of Big Data Value",
publisher = "Springer International Publishing AG",
address = "Switzerland",

}

Download

TY - CHAP

T1 - Technical research priorities for big data

AU - Curry, Edward

AU - Zillner, Sonja

AU - Metzger, Andreas

AU - Berre, Arne J.

AU - Auer, Sören

AU - Walshe, Ray

AU - Despenic, Marija

AU - Petkovic, Milan

AU - Roman, Dumitru

AU - Waterfeld, Walter

AU - Seidl, Robert

AU - Hasan, Souleiman

AU - ul Hassan, Umair

AU - Ojo, Adegboyega

N1 - Acknowledgments: We greatly acknowledge the collective effort of the SRIA teams: Carlos A. Iglesias, Antonio Alfaro, Jesus Angel, Sören Auer, Paolo Bellavista, Arne Berre, Freek Bomhof, Stuart Campbell, Geraud Canet, Giuseppa Caruso, Edward Curry, Paul Czech, Davide Dalle Carbonare, Nuria de Lama, Stefano de Panfilis, Thomas Delavallade, Marija Despenic, Ana Garcia Robles, Wolfgang Gerteis, Aris Gkoulalas-Divanis, Nuria Gomez, Paolo Gonzales, Thomas Hahn, Souleiman Hasan, Jim Keneally, Bjarne Kjær Ersbøll, Bas Kotterink, Yannick Legré, Yves Mabiala, Julie Marguerite, Dirk Mayer, Ernestina Menasalves, Andreas Metzger, Elisa Molino, Thierry Nagellen, Dalit Naor, Maria Perez, Milan Petkovic, Roberta Piscitelli, Klaus-Dieter Platte, Pierre Pleven, Dumitru Roman, Titi Roman, Alexandra Rosén, Nikos Sarris, Stefano Scamuzzo, Simon Scerri, Corinna Schulze, Robert Seidl, Bjørn Skjellaug, Caj Södergård, Claire Tonna, Francois Troussier, Colin Upstill, Josef Urban, Meilof Veeningen, Tonny Velin, Ray Walshe, Walter Waterfeld, Stefan Wrobel, and Sonja Zillner.

PY - 2021

Y1 - 2021

N2 - To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data.

AB - To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data.

KW - Data analytics

KW - Data ecosystem

KW - Data management

KW - Data processing

KW - Data protection

KW - Data standardisation

KW - Data visualisation

KW - Research challenges

KW - User interactions

UR - http://www.scopus.com/inward/record.url?scp=85143085292&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-68176-0_5

DO - 10.1007/978-3-030-68176-0_5

M3 - Contribution to book/anthology

AN - SCOPUS:85143085292

SN - 9783030681753

SP - 97

EP - 126

BT - The Elements of Big Data Value

PB - Springer International Publishing AG

ER -

By the same author(s)