Surface passivation of crystalline silicon solar cells: Present and future

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Institute for Solar Energy Research (ISFH)
View graph of relations

Details

Original languageEnglish
Pages (from-to)39-54
Number of pages16
JournalSolar Energy Materials and Solar Cells
Volume187
Early online date27 Jul 2018
Publication statusPublished - 1 Dec 2018

Abstract

In the first part of this paper, we review the developments which led to the present state-of-the-art in the surface passivation of today's industrially predominant dopant-diffused crystalline silicon (c-Si) solar cells, based on dielectric layers such as silicon oxide, silicon nitride, aluminum oxide and stacks thereof. In the second part of this review, we focus on the future developments in the field of c-Si solar cells based on carrier-selective passivation layers. Whereas the dielectric layers are insulating and are hence applied only for passivating the non-contacted areas of the silicon surface, the carrier-selective passivation layers are intended to provide an effective passivation of non-contacted as well as contacted areas of a c-Si solar cell, thereby increasing the efficiency potential of c-Si solar cells significantly. Due to the fact that the carrier-selective layers are implemented in a contact, besides the good passivation properties for minorities, these layers must also provide a good majority carrier transport, i.e. they have to provide a low contact resistance. Both properties, i.e. suppression of minority-carrier recombination as well as good majority-carrier transport, define the selectivity of the carrier-selective contact, which is an important figure of merit for the assessment and comparison of different types of carrier-selective contacts. One very promising type of carrier-selective passivation layer is based on heavily doped polycrystalline silicon layers deposited on a thin silicon oxide layer, the latter providing the excellent passivation while enabling efficient majority-carrier transport via pin-holes and/or tunneling. Moreover, we discuss metal oxides and conductive polymers, which have only recently been applied to c-Si photovoltaics, but seem to have a promising potential as low-cost selective contact materials. We finally compare combinations of the various options of carrier-selective layers concerning their combined selectivities and efficiency potentials.

Keywords

    Carrier-selective contacts, Silicon solar cells, Surface passivation

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Surface passivation of crystalline silicon solar cells: Present and future. / Schmidt, Jan; Peibst, Robby; Brendel, Rolf.
In: Solar Energy Materials and Solar Cells, Vol. 187, 01.12.2018, p. 39-54.

Research output: Contribution to journalArticleResearchpeer review

Schmidt J, Peibst R, Brendel R. Surface passivation of crystalline silicon solar cells: Present and future. Solar Energy Materials and Solar Cells. 2018 Dec 1;187:39-54. Epub 2018 Jul 27. doi: 10.1016/j.solmat.2018.06.047
Download
@article{dcb0e45e865548e59e990e63438daa15,
title = "Surface passivation of crystalline silicon solar cells: Present and future",
abstract = "In the first part of this paper, we review the developments which led to the present state-of-the-art in the surface passivation of today's industrially predominant dopant-diffused crystalline silicon (c-Si) solar cells, based on dielectric layers such as silicon oxide, silicon nitride, aluminum oxide and stacks thereof. In the second part of this review, we focus on the future developments in the field of c-Si solar cells based on carrier-selective passivation layers. Whereas the dielectric layers are insulating and are hence applied only for passivating the non-contacted areas of the silicon surface, the carrier-selective passivation layers are intended to provide an effective passivation of non-contacted as well as contacted areas of a c-Si solar cell, thereby increasing the efficiency potential of c-Si solar cells significantly. Due to the fact that the carrier-selective layers are implemented in a contact, besides the good passivation properties for minorities, these layers must also provide a good majority carrier transport, i.e. they have to provide a low contact resistance. Both properties, i.e. suppression of minority-carrier recombination as well as good majority-carrier transport, define the selectivity of the carrier-selective contact, which is an important figure of merit for the assessment and comparison of different types of carrier-selective contacts. One very promising type of carrier-selective passivation layer is based on heavily doped polycrystalline silicon layers deposited on a thin silicon oxide layer, the latter providing the excellent passivation while enabling efficient majority-carrier transport via pin-holes and/or tunneling. Moreover, we discuss metal oxides and conductive polymers, which have only recently been applied to c-Si photovoltaics, but seem to have a promising potential as low-cost selective contact materials. We finally compare combinations of the various options of carrier-selective layers concerning their combined selectivities and efficiency potentials.",
keywords = "Carrier-selective contacts, Silicon solar cells, Surface passivation",
author = "Jan Schmidt and Robby Peibst and Rolf Brendel",
note = "Publisher Copyright: {\textcopyright} 2018 Elsevier B.V. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2018",
month = dec,
day = "1",
doi = "10.1016/j.solmat.2018.06.047",
language = "English",
volume = "187",
pages = "39--54",
journal = "Solar Energy Materials and Solar Cells",
issn = "0927-0248",
publisher = "Elsevier BV",

}

Download

TY - JOUR

T1 - Surface passivation of crystalline silicon solar cells

T2 - Present and future

AU - Schmidt, Jan

AU - Peibst, Robby

AU - Brendel, Rolf

N1 - Publisher Copyright: © 2018 Elsevier B.V. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - In the first part of this paper, we review the developments which led to the present state-of-the-art in the surface passivation of today's industrially predominant dopant-diffused crystalline silicon (c-Si) solar cells, based on dielectric layers such as silicon oxide, silicon nitride, aluminum oxide and stacks thereof. In the second part of this review, we focus on the future developments in the field of c-Si solar cells based on carrier-selective passivation layers. Whereas the dielectric layers are insulating and are hence applied only for passivating the non-contacted areas of the silicon surface, the carrier-selective passivation layers are intended to provide an effective passivation of non-contacted as well as contacted areas of a c-Si solar cell, thereby increasing the efficiency potential of c-Si solar cells significantly. Due to the fact that the carrier-selective layers are implemented in a contact, besides the good passivation properties for minorities, these layers must also provide a good majority carrier transport, i.e. they have to provide a low contact resistance. Both properties, i.e. suppression of minority-carrier recombination as well as good majority-carrier transport, define the selectivity of the carrier-selective contact, which is an important figure of merit for the assessment and comparison of different types of carrier-selective contacts. One very promising type of carrier-selective passivation layer is based on heavily doped polycrystalline silicon layers deposited on a thin silicon oxide layer, the latter providing the excellent passivation while enabling efficient majority-carrier transport via pin-holes and/or tunneling. Moreover, we discuss metal oxides and conductive polymers, which have only recently been applied to c-Si photovoltaics, but seem to have a promising potential as low-cost selective contact materials. We finally compare combinations of the various options of carrier-selective layers concerning their combined selectivities and efficiency potentials.

AB - In the first part of this paper, we review the developments which led to the present state-of-the-art in the surface passivation of today's industrially predominant dopant-diffused crystalline silicon (c-Si) solar cells, based on dielectric layers such as silicon oxide, silicon nitride, aluminum oxide and stacks thereof. In the second part of this review, we focus on the future developments in the field of c-Si solar cells based on carrier-selective passivation layers. Whereas the dielectric layers are insulating and are hence applied only for passivating the non-contacted areas of the silicon surface, the carrier-selective passivation layers are intended to provide an effective passivation of non-contacted as well as contacted areas of a c-Si solar cell, thereby increasing the efficiency potential of c-Si solar cells significantly. Due to the fact that the carrier-selective layers are implemented in a contact, besides the good passivation properties for minorities, these layers must also provide a good majority carrier transport, i.e. they have to provide a low contact resistance. Both properties, i.e. suppression of minority-carrier recombination as well as good majority-carrier transport, define the selectivity of the carrier-selective contact, which is an important figure of merit for the assessment and comparison of different types of carrier-selective contacts. One very promising type of carrier-selective passivation layer is based on heavily doped polycrystalline silicon layers deposited on a thin silicon oxide layer, the latter providing the excellent passivation while enabling efficient majority-carrier transport via pin-holes and/or tunneling. Moreover, we discuss metal oxides and conductive polymers, which have only recently been applied to c-Si photovoltaics, but seem to have a promising potential as low-cost selective contact materials. We finally compare combinations of the various options of carrier-selective layers concerning their combined selectivities and efficiency potentials.

KW - Carrier-selective contacts

KW - Silicon solar cells

KW - Surface passivation

UR - http://www.scopus.com/inward/record.url?scp=85050537610&partnerID=8YFLogxK

U2 - 10.1016/j.solmat.2018.06.047

DO - 10.1016/j.solmat.2018.06.047

M3 - Article

AN - SCOPUS:85050537610

VL - 187

SP - 39

EP - 54

JO - Solar Energy Materials and Solar Cells

JF - Solar Energy Materials and Solar Cells

SN - 0927-0248

ER -

By the same author(s)