Details
Original language | English |
---|---|
Title of host publication | 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 |
Publication status | Published - 1 Feb 2011 |
Event | 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 - Munich, Germany Duration: 22 May 2011 → 26 May 2011 |
Publication series
Name | 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 |
---|
Abstract
Multiphoton fluorescence microscopy based on femtosecond laser scanning is a powerful technique for three dimensional optical sectioning in life sciences. The method is based on the simultaneous absorption of two or three photons in the focal volume of a high NA microscope objective. The same setup is suited for nanodissection of living cells and subcellular structures. A very small lateral extent of the modified focal volume is required to minimize collateral damage in the vicinity of the laser focus and to improve long-term cell viability. By using high NA microscope objectives and laser pulse energies close to the ablation threshold, the lateral extent of the modified material is limited to less than 1 m. This diffraction limited resolution can be further improved by techniques generally referred to as superresolution. These are achieved by controlling the phase of the laser beam with a diffractive filter placed at the exit pupil of an optical system. We integrated this technique into nanosurgery of cells, which we demonstrate here for the first time.
ASJC Scopus subject areas
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011. 2011. 5943235 (2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Superresolved femtosecond laser nanosurgery of cells
AU - Pospiech, Matthias
AU - Emons, Moritz
AU - Kuetemeyer, Kai
AU - Heisterkamp, Alexander
AU - Morgner, Uwe
PY - 2011/2/1
Y1 - 2011/2/1
N2 - Multiphoton fluorescence microscopy based on femtosecond laser scanning is a powerful technique for three dimensional optical sectioning in life sciences. The method is based on the simultaneous absorption of two or three photons in the focal volume of a high NA microscope objective. The same setup is suited for nanodissection of living cells and subcellular structures. A very small lateral extent of the modified focal volume is required to minimize collateral damage in the vicinity of the laser focus and to improve long-term cell viability. By using high NA microscope objectives and laser pulse energies close to the ablation threshold, the lateral extent of the modified material is limited to less than 1 m. This diffraction limited resolution can be further improved by techniques generally referred to as superresolution. These are achieved by controlling the phase of the laser beam with a diffractive filter placed at the exit pupil of an optical system. We integrated this technique into nanosurgery of cells, which we demonstrate here for the first time.
AB - Multiphoton fluorescence microscopy based on femtosecond laser scanning is a powerful technique for three dimensional optical sectioning in life sciences. The method is based on the simultaneous absorption of two or three photons in the focal volume of a high NA microscope objective. The same setup is suited for nanodissection of living cells and subcellular structures. A very small lateral extent of the modified focal volume is required to minimize collateral damage in the vicinity of the laser focus and to improve long-term cell viability. By using high NA microscope objectives and laser pulse energies close to the ablation threshold, the lateral extent of the modified material is limited to less than 1 m. This diffraction limited resolution can be further improved by techniques generally referred to as superresolution. These are achieved by controlling the phase of the laser beam with a diffractive filter placed at the exit pupil of an optical system. We integrated this technique into nanosurgery of cells, which we demonstrate here for the first time.
UR - http://www.scopus.com/inward/record.url?scp=80052285640&partnerID=8YFLogxK
U2 - 10.1109/CLEOE.2011.5943235
DO - 10.1109/CLEOE.2011.5943235
M3 - Conference contribution
AN - SCOPUS:80052285640
SN - 9781457705335
T3 - 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
BT - 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
T2 - 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
Y2 - 22 May 2011 through 26 May 2011
ER -