Details
Original language | English |
---|---|
Pages (from-to) | 155-189 |
Number of pages | 35 |
Journal | Geochimica et Cosmochimica Acta |
Volume | 230 |
Early online date | 7 Apr 2018 |
Publication status | Published - 1 Jun 2018 |
Abstract
The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7–69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90–209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1−xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from −0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
Keywords
- Chalcophile elements, Crust-mantle boundary, Melt-mantle interaction, Oceanic core complexes, Sulfides
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Geochimica et Cosmochimica Acta, Vol. 230, 01.06.2018, p. 155-189.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Sulfide enrichment at an oceanic crust-mantle transition zone
T2 - Kane Megamullion (23°N, MAR)
AU - Ciazela, Jakub
AU - Koepke, Juergen
AU - Dick, Henry J. B.
AU - Botcharnikov, Roman
AU - Muszynski, Andrzej
AU - Lazarov, Marina
AU - Schuth, Stephan
AU - Pieterek, Bartosz
AU - Kuhn, Thomas
N1 - © 2018 Elsevier Ltd. All rights reserved.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7–69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90–209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1−xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from −0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
AB - The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7–69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90–209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1−xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from −0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
KW - Chalcophile elements
KW - Crust-mantle boundary
KW - Melt-mantle interaction
KW - Oceanic core complexes
KW - Sulfides
UR - http://www.scopus.com/inward/record.url?scp=85045747422&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2018.03.027
DO - 10.1016/j.gca.2018.03.027
M3 - Article
AN - SCOPUS:85045747422
VL - 230
SP - 155
EP - 189
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
SN - 0016-7037
ER -