Details
Original language | English |
---|---|
Pages (from-to) | 19378-19392 |
Number of pages | 15 |
Journal | Physical Chemistry Chemical Physics |
Volume | 13 |
Issue number | 43 |
Publication status | Published - 21 Nov 2011 |
Abstract
The solid lithium-ion electrolyte "Li7La3Zr 2O12" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, 6Li and 7Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy Ea characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10-4 Scm-1 to 4 × 10-4 Scm-1 depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10 -6 Scm-1, Ea = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number te- is of the order of 10-7. Thus, cubic LLZO is an almost exclusive lithium ion conductor at ambient temperature.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
- Chemistry(all)
- Physical and Theoretical Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Chemistry Chemical Physics, Vol. 13, No. 43, 21.11.2011, p. 19378-19392.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Structure and dynamics of the fast lithium ion conductor "li 7La3Zr2O12"
AU - Buschmann, Henrik
AU - Dölle, Janis
AU - Berendts, Stefan
AU - Kuhn, Alexander
AU - Bottke, Patrick
AU - Wilkening, Martin
AU - Heitjans, Paul
AU - Senyshyn, Anatoliy
AU - Ehrenberg, Helmut
AU - Lotnyk, Andriy
AU - Duppel, Viola
AU - Kienle, Lorenz
AU - Janek, Jürgen
PY - 2011/11/21
Y1 - 2011/11/21
N2 - The solid lithium-ion electrolyte "Li7La3Zr 2O12" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, 6Li and 7Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy Ea characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10-4 Scm-1 to 4 × 10-4 Scm-1 depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10 -6 Scm-1, Ea = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number te- is of the order of 10-7. Thus, cubic LLZO is an almost exclusive lithium ion conductor at ambient temperature.
AB - The solid lithium-ion electrolyte "Li7La3Zr 2O12" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, 6Li and 7Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy Ea characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10-4 Scm-1 to 4 × 10-4 Scm-1 depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10 -6 Scm-1, Ea = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number te- is of the order of 10-7. Thus, cubic LLZO is an almost exclusive lithium ion conductor at ambient temperature.
UR - http://www.scopus.com/inward/record.url?scp=80055027037&partnerID=8YFLogxK
U2 - 10.1039/c1cp22108f
DO - 10.1039/c1cp22108f
M3 - Article
AN - SCOPUS:80055027037
VL - 13
SP - 19378
EP - 19392
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
IS - 43
ER -