Details
Original language | English |
---|---|
Article number | 155323 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 84 |
Issue number | 15 |
Publication status | Published - 31 Oct 2011 |
Abstract
We show experimentally, using spin quantum beat spectroscopy, that strain applied to an undoped symmetric (001) GaAs/AlGaAs multiple quantum well causes an in-plane anisotropy of the spin-relaxation rate Γs, but leaves the electron Landé g factor isotropic. The spin-relaxation-rate anisotropy gives a direct measure of the bulk inversion asymmetry and the strain contributions to the conduction-band spin splitting. The comparison of the measured strain-splitting coefficient C3 for the quantum well with the value for bulk GaAs suggests a dependence on electron quantum confinement. The isotropic g factor implies a symmetric conduction electron wave function, whereas the anisotropic spin-relaxation rate requires a nonzero expectation value of the valence-band potential gradient on the conduction-band states. Therefore, the experiment suggests that strain generates an effective valence-band potential gradient, while the conduction-band potential remains symmetrical to a good approximation.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review B - Condensed Matter and Materials Physics, Vol. 84, No. 15, 155323, 31.10.2011.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Strain-induced spin relaxation anisotropy in symmetric (001)-oriented GaAs quantum wells
AU - English, D. J.
AU - Lagoudakis, P. G.
AU - Harley, R. T.
AU - Eldridge, P. S.
AU - Hübner, Jens
AU - Oestreich, Michael
PY - 2011/10/31
Y1 - 2011/10/31
N2 - We show experimentally, using spin quantum beat spectroscopy, that strain applied to an undoped symmetric (001) GaAs/AlGaAs multiple quantum well causes an in-plane anisotropy of the spin-relaxation rate Γs, but leaves the electron Landé g factor isotropic. The spin-relaxation-rate anisotropy gives a direct measure of the bulk inversion asymmetry and the strain contributions to the conduction-band spin splitting. The comparison of the measured strain-splitting coefficient C3 for the quantum well with the value for bulk GaAs suggests a dependence on electron quantum confinement. The isotropic g factor implies a symmetric conduction electron wave function, whereas the anisotropic spin-relaxation rate requires a nonzero expectation value of the valence-band potential gradient on the conduction-band states. Therefore, the experiment suggests that strain generates an effective valence-band potential gradient, while the conduction-band potential remains symmetrical to a good approximation.
AB - We show experimentally, using spin quantum beat spectroscopy, that strain applied to an undoped symmetric (001) GaAs/AlGaAs multiple quantum well causes an in-plane anisotropy of the spin-relaxation rate Γs, but leaves the electron Landé g factor isotropic. The spin-relaxation-rate anisotropy gives a direct measure of the bulk inversion asymmetry and the strain contributions to the conduction-band spin splitting. The comparison of the measured strain-splitting coefficient C3 for the quantum well with the value for bulk GaAs suggests a dependence on electron quantum confinement. The isotropic g factor implies a symmetric conduction electron wave function, whereas the anisotropic spin-relaxation rate requires a nonzero expectation value of the valence-band potential gradient on the conduction-band states. Therefore, the experiment suggests that strain generates an effective valence-band potential gradient, while the conduction-band potential remains symmetrical to a good approximation.
UR - http://www.scopus.com/inward/record.url?scp=80455155980&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.84.155323
DO - 10.1103/PhysRevB.84.155323
M3 - Article
AN - SCOPUS:80455155980
VL - 84
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 1098-0121
IS - 15
M1 - 155323
ER -