Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Hans Gerd Leopold
  • Elmar Schrohe

External Research Organisations

  • Friedrich Schiller University Jena
  • Johannes Gutenberg University Mainz
View graph of relations

Details

Original languageEnglish
Pages (from-to)99-110
Number of pages12
JournalManuscripta mathematica
Volume78
Issue number1
Publication statusPublished - Dec 1993
Externally publishedYes

Abstract

The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.

ASJC Scopus subject areas

Cite this

Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces. / Leopold, Hans Gerd; Schrohe, Elmar.
In: Manuscripta mathematica, Vol. 78, No. 1, 12.1993, p. 99-110.

Research output: Contribution to journalArticleResearchpeer review

Leopold, Hans Gerd ; Schrohe, Elmar. / Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces. In: Manuscripta mathematica. 1993 ; Vol. 78, No. 1. pp. 99-110.
Download
@article{f45173688f3643f3ab195a85701333c3,
title = "Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces",
abstract = "The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.",
author = "Leopold, {Hans Gerd} and Elmar Schrohe",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "1993",
month = dec,
doi = "10.1007/BF02599303",
language = "English",
volume = "78",
pages = "99--110",
journal = "Manuscripta mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces

AU - Leopold, Hans Gerd

AU - Schrohe, Elmar

N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 1993/12

Y1 - 1993/12

N2 - The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.

AB - The algebra of pseudodifferential operators with symbols in S(Formula presented.), δ<1, is shown to be a spectrally invariant subalgebra of ℒ(b(Formula presented.)) and ℒ(F(Formula presented.)). The spectrum of each of these pseudodifferential operators acting on B(Formula presented.) or F(Formula presented.) is independent of the choice of s, p, and q.

UR - http://www.scopus.com/inward/record.url?scp=0039217569&partnerID=8YFLogxK

U2 - 10.1007/BF02599303

DO - 10.1007/BF02599303

M3 - Article

AN - SCOPUS:0039217569

VL - 78

SP - 99

EP - 110

JO - Manuscripta mathematica

JF - Manuscripta mathematica

SN - 0025-2611

IS - 1

ER -