Details
Original language | English |
---|---|
Pages (from-to) | 561-581 |
Number of pages | 21 |
Journal | Journal of evolution equations |
Volume | 18 |
Issue number | 2 |
Early online date | 28 Oct 2017 |
Publication status | Published - Jun 2018 |
Externally published | Yes |
Abstract
In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.
Keywords
- Chemotaxis–fluid, Global existence, Keller–Segel, Navier–Stokes, Singular sensitivity
ASJC Scopus subject areas
- Mathematics(all)
- Mathematics (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of evolution equations, Vol. 18, No. 2, 06.2018, p. 561-581.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Singular sensitivity in a Keller–Segel-fluid system
AU - Black, Tobias
AU - Lankeit, J.
AU - Mizukami, M.
N1 - Publisher Copyright: © 2017, Springer International Publishing AG.
PY - 2018/6
Y1 - 2018/6
N2 - In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.
AB - In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.
KW - Chemotaxis–fluid
KW - Global existence
KW - Keller–Segel
KW - Navier–Stokes
KW - Singular sensitivity
UR - http://www.scopus.com/inward/record.url?scp=85032348009&partnerID=8YFLogxK
U2 - 10.1007/s00028-017-0411-5
DO - 10.1007/s00028-017-0411-5
M3 - Article
VL - 18
SP - 561
EP - 581
JO - Journal of evolution equations
JF - Journal of evolution equations
SN - 1424-3199
IS - 2
ER -