Singular sensitivity in a Keller–Segel-fluid system

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Tobias Black
  • J. Lankeit
  • M. Mizukami

External Research Organisations

  • Paderborn University
  • Tokyo University of Science
View graph of relations

Details

Original languageEnglish
Pages (from-to)561-581
Number of pages21
JournalJournal of evolution equations
Volume18
Issue number2
Early online date28 Oct 2017
Publication statusPublished - Jun 2018
Externally publishedYes

Abstract

In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.

Keywords

    Chemotaxis–fluid, Global existence, Keller–Segel, Navier–Stokes, Singular sensitivity

ASJC Scopus subject areas

Cite this

Singular sensitivity in a Keller–Segel-fluid system. / Black, Tobias; Lankeit, J.; Mizukami, M.
In: Journal of evolution equations, Vol. 18, No. 2, 06.2018, p. 561-581.

Research output: Contribution to journalArticleResearchpeer review

Black T, Lankeit J, Mizukami M. Singular sensitivity in a Keller–Segel-fluid system. Journal of evolution equations. 2018 Jun;18(2):561-581. Epub 2017 Oct 28. doi: 10.1007/s00028-017-0411-5
Black, Tobias ; Lankeit, J. ; Mizukami, M. / Singular sensitivity in a Keller–Segel-fluid system. In: Journal of evolution equations. 2018 ; Vol. 18, No. 2. pp. 561-581.
Download
@article{78f4ac96866a4578a6a2e617c983e6f1,
title = "Singular sensitivity in a Keller–Segel-fluid system",
abstract = "In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.",
keywords = "Chemotaxis–fluid, Global existence, Keller–Segel, Navier–Stokes, Singular sensitivity",
author = "Tobias Black and J. Lankeit and M. Mizukami",
note = "Publisher Copyright: {\textcopyright} 2017, Springer International Publishing AG.",
year = "2018",
month = jun,
doi = "10.1007/s00028-017-0411-5",
language = "English",
volume = "18",
pages = "561--581",
journal = "Journal of evolution equations",
issn = "1424-3199",
publisher = "Birkhauser Verlag Basel",
number = "2",

}

Download

TY - JOUR

T1 - Singular sensitivity in a Keller–Segel-fluid system

AU - Black, Tobias

AU - Lankeit, J.

AU - Mizukami, M.

N1 - Publisher Copyright: © 2017, Springer International Publishing AG.

PY - 2018/6

Y1 - 2018/6

N2 - In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.

AB - In bounded smooth domains Ω ⊂ R N, N∈ { 2 , 3 } , considering the chemotaxis–fluid system nt+u·∇n=Δn-χ∇·(nc∇c)ct+u·∇c=Δc-c+nut+κ(u·∇)u=Δu+∇P+n∇ϕ with singular sensitivity, we prove global existence of classical solutions for given ϕ∈ C 2(Ω ¯) , for κ= 0 (Stokes-fluid) if N= 3 and κ∈ { 0 , 1 } (Stokes- or Navier–Stokes-fluid) if N= 2 and under the condition that 0<χ<2N.

KW - Chemotaxis–fluid

KW - Global existence

KW - Keller–Segel

KW - Navier–Stokes

KW - Singular sensitivity

UR - http://www.scopus.com/inward/record.url?scp=85032348009&partnerID=8YFLogxK

U2 - 10.1007/s00028-017-0411-5

DO - 10.1007/s00028-017-0411-5

M3 - Article

VL - 18

SP - 561

EP - 581

JO - Journal of evolution equations

JF - Journal of evolution equations

SN - 1424-3199

IS - 2

ER -