Details
Original language | English |
---|---|
Article number | 1416521 |
Journal | Frontiers in Marine Science |
Volume | 11 |
Publication status | Published - 27 Aug 2024 |
Abstract
Projections of the effects of fine sediment disposals, relevant for managed estuaries and tidally influenced coastal areas, are typically based on numerical far-field models. For an accurate consideration of the disposal itself, near-field models are often needed. The open source near-field model, PROVER-M, simulates the relevant processes of the physics based, dynamic behavior of disposed fine sediments in coastal waters and is applied in this study. First, new small scale laboratory experiments of instantaneous disposals are presented, documenting the dynamic behavior of fine material disposed in shallow waters. Second, results of the PROVER-M model are shown for disposals in three different settings: (1) a field-scaled study complementary to the laboratory set-up, (2) a parametric study of sequentially varied model input and (3) a far-field model coupling for estimation of the PROVER-M impact. By comparing results of the laboratory experiments to the PROVER-M model, the physical behavior of PROVER-M is successfully validated. The impact of the ambient setting and dredged material parameters is evaluated by the PROVER-M simulations, where the results show non-linear, complex interdependencies of the input parameters on disposal properties in dependence of ambient site conditions and material composition. In this context, limits of the model application are assessed and critically discussed. Finally, an exemplary coupling to a far-field model based on a real set of disposals in the tidally influenced Weser estuary (Germany) illustrates the potential impact of PROVER-M for assessing far-field suspended sediment concentration (SSC), with increased maximum SSC values of up to 10%.
Keywords
- dynamic plume, near-field model, sediment disposal, sediment management, turbidity plume
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Oceanography
- Environmental Science(all)
- Global and Planetary Change
- Agricultural and Biological Sciences(all)
- Aquatic Science
- Environmental Science(all)
- Water Science and Technology
- Environmental Science(all)
- Environmental Science (miscellaneous)
- Engineering(all)
- Ocean Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Frontiers in Marine Science, Vol. 11, 1416521, 27.08.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Simulating the near-field dynamic plume behavior of disposed fine sediments
AU - Gundlach, Jannek
AU - Herbst, Maximilian
AU - Alex, Antje Svenja
AU - Zorndt, Anna
AU - Jordan, Christian
AU - Visscher, Jan
AU - Schlurmann, Torsten
N1 - Publisher Copyright: Copyright © 2024 Gundlach, Herbst, Alex, Zorndt, Jordan, Visscher and Schlurmann.
PY - 2024/8/27
Y1 - 2024/8/27
N2 - Projections of the effects of fine sediment disposals, relevant for managed estuaries and tidally influenced coastal areas, are typically based on numerical far-field models. For an accurate consideration of the disposal itself, near-field models are often needed. The open source near-field model, PROVER-M, simulates the relevant processes of the physics based, dynamic behavior of disposed fine sediments in coastal waters and is applied in this study. First, new small scale laboratory experiments of instantaneous disposals are presented, documenting the dynamic behavior of fine material disposed in shallow waters. Second, results of the PROVER-M model are shown for disposals in three different settings: (1) a field-scaled study complementary to the laboratory set-up, (2) a parametric study of sequentially varied model input and (3) a far-field model coupling for estimation of the PROVER-M impact. By comparing results of the laboratory experiments to the PROVER-M model, the physical behavior of PROVER-M is successfully validated. The impact of the ambient setting and dredged material parameters is evaluated by the PROVER-M simulations, where the results show non-linear, complex interdependencies of the input parameters on disposal properties in dependence of ambient site conditions and material composition. In this context, limits of the model application are assessed and critically discussed. Finally, an exemplary coupling to a far-field model based on a real set of disposals in the tidally influenced Weser estuary (Germany) illustrates the potential impact of PROVER-M for assessing far-field suspended sediment concentration (SSC), with increased maximum SSC values of up to 10%.
AB - Projections of the effects of fine sediment disposals, relevant for managed estuaries and tidally influenced coastal areas, are typically based on numerical far-field models. For an accurate consideration of the disposal itself, near-field models are often needed. The open source near-field model, PROVER-M, simulates the relevant processes of the physics based, dynamic behavior of disposed fine sediments in coastal waters and is applied in this study. First, new small scale laboratory experiments of instantaneous disposals are presented, documenting the dynamic behavior of fine material disposed in shallow waters. Second, results of the PROVER-M model are shown for disposals in three different settings: (1) a field-scaled study complementary to the laboratory set-up, (2) a parametric study of sequentially varied model input and (3) a far-field model coupling for estimation of the PROVER-M impact. By comparing results of the laboratory experiments to the PROVER-M model, the physical behavior of PROVER-M is successfully validated. The impact of the ambient setting and dredged material parameters is evaluated by the PROVER-M simulations, where the results show non-linear, complex interdependencies of the input parameters on disposal properties in dependence of ambient site conditions and material composition. In this context, limits of the model application are assessed and critically discussed. Finally, an exemplary coupling to a far-field model based on a real set of disposals in the tidally influenced Weser estuary (Germany) illustrates the potential impact of PROVER-M for assessing far-field suspended sediment concentration (SSC), with increased maximum SSC values of up to 10%.
KW - dynamic plume
KW - near-field model
KW - sediment disposal
KW - sediment management
KW - turbidity plume
UR - http://www.scopus.com/inward/record.url?scp=85203540892&partnerID=8YFLogxK
U2 - 10.3389/fmars.2024.1416521
DO - 10.3389/fmars.2024.1416521
M3 - Article
AN - SCOPUS:85203540892
VL - 11
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
SN - 2296-7745
M1 - 1416521
ER -