Sensorlose Überwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence

Research output: Contribution to journalArticleResearchpeer review

Authors

View graph of relations

Details

Original languageGerman
Pages (from-to)305-308
Number of pages4
Journalwt Werkstattstechnik online
Volume111
Issue number5
Publication statusPublished - 2021

Abstract

Spindle current measurement allows acquiring process information without the need for additional sensors. Digital machine controls allow accessing the data with low effort. However, precise classification of process errors is a non-trivial task, especially for complex, single item workpieces without reference data. This work presents an approach to predict the spindle current and calculate tolerance limits by using a neuronal network based on a material removal simulation.

ASJC Scopus subject areas

Cite this

Sensorlose Überwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence. / Denkena, Berend; Bergmann, Benjamin; Becker, Jonas et al.
In: wt Werkstattstechnik online, Vol. 111, No. 5, 2021, p. 305-308.

Research output: Contribution to journalArticleResearchpeer review

Denkena B, Bergmann B, Becker J, Blech H. Sensorlose Überwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence. wt Werkstattstechnik online. 2021;111(5):305-308. doi: 10.37544/1436-4980-2021-05-39
Denkena, Berend ; Bergmann, Benjamin ; Becker, Jonas et al. / Sensorlose Überwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence. In: wt Werkstattstechnik online. 2021 ; Vol. 111, No. 5. pp. 305-308.
Download
@article{652daa01d92441c9abe337d6ba7e8fd2,
title = "Sensorlose {\"U}berwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence",
abstract = "Spindle current measurement allows acquiring process information without the need for additional sensors. Digital machine controls allow accessing the data with low effort. However, precise classification of process errors is a non-trivial task, especially for complex, single item workpieces without reference data. This work presents an approach to predict the spindle current and calculate tolerance limits by using a neuronal network based on a material removal simulation.",
author = "Berend Denkena and Benjamin Bergmann and Jonas Becker and Heiko Blech",
year = "2021",
doi = "10.37544/1436-4980-2021-05-39",
language = "Deutsch",
volume = "111",
pages = "305--308",
number = "5",

}

Download

TY - JOUR

T1 - Sensorlose Überwachung der Einzelteilfertigung/Spindle-current-based process monitoring using artificial intelligence

AU - Denkena, Berend

AU - Bergmann, Benjamin

AU - Becker, Jonas

AU - Blech, Heiko

PY - 2021

Y1 - 2021

N2 - Spindle current measurement allows acquiring process information without the need for additional sensors. Digital machine controls allow accessing the data with low effort. However, precise classification of process errors is a non-trivial task, especially for complex, single item workpieces without reference data. This work presents an approach to predict the spindle current and calculate tolerance limits by using a neuronal network based on a material removal simulation.

AB - Spindle current measurement allows acquiring process information without the need for additional sensors. Digital machine controls allow accessing the data with low effort. However, precise classification of process errors is a non-trivial task, especially for complex, single item workpieces without reference data. This work presents an approach to predict the spindle current and calculate tolerance limits by using a neuronal network based on a material removal simulation.

UR - http://www.scopus.com/inward/record.url?scp=85107842670&partnerID=8YFLogxK

U2 - 10.37544/1436-4980-2021-05-39

DO - 10.37544/1436-4980-2021-05-39

M3 - Artikel

AN - SCOPUS:85107842670

VL - 111

SP - 305

EP - 308

JO - wt Werkstattstechnik online

JF - wt Werkstattstechnik online

IS - 5

ER -

By the same author(s)