Semantic Deep Intermodal Feature Transfer: Transferring Feature Descriptors Between Imaging Modalities

Research output: Working paper/PreprintPreprint

Authors

Research Organisations

View graph of relations

Details

Original languageEnglish
Publication statusE-pub ahead of print - 26 Jul 2019

Abstract

Under difficult environmental conditions, the view of RGB cameras may be restricted by fog, dust or difficult lighting situations. Because thermal cameras visualize thermal radiation, they are not subject to the same limitations as RGB cameras. However, because RGB and thermal imaging differ significantly in appearance, common, state-of-the-art feature descriptors are unsuitable for intermodal feature matching between these imaging modalities. As a consequence, visual maps created with an RGB camera can currently not be used for localization using a thermal camera. In this paper, we introduce the Semantic Deep Intermodal Feature Transfer (Se-DIFT), an approach for transferring image feature descriptors from the visual to the thermal spectrum and vice versa. For this purpose, we predict potential feature appearance in varying imaging modalities using a deep convolutional encoder-decoder architecture in combination with a global feature vector. Since the representation of a thermal image is not only affected by features which can be extracted from an RGB image, we introduce the global feature vector which augments the auto encoder's coding. The global feature vector contains additional information about the thermal history of a scene which is automatically extracted from external data sources. By augmenting the encoder's coding, we decrease the L1 error of the prediction by more than 7% compared to the prediction of a traditional U-Net architecture. To evaluate our approach, we match image feature descriptors detected in RGB and thermal images using Se-DIFT. Subsequently, we make a competitive comparison on the intermodal transferability of SIFT, SURF, and ORB features using our approach.

Cite this

Semantic Deep Intermodal Feature Transfer: Transferring Feature Descriptors Between Imaging Modalities. / Kleinschmidt, Sebastian P.; Wagner, Bernardo.
2019.

Research output: Working paper/PreprintPreprint

Kleinschmidt SP, Wagner B. Semantic Deep Intermodal Feature Transfer: Transferring Feature Descriptors Between Imaging Modalities. 2019 Jul 26. Epub 2019 Jul 26. doi: https://doi.org/10.48550/arXiv.1907.11436
Download
@techreport{bc16222918aa45adb707990482b3394e,
title = "Semantic Deep Intermodal Feature Transfer: Transferring Feature Descriptors Between Imaging Modalities",
abstract = "Under difficult environmental conditions, the view of RGB cameras may be restricted by fog, dust or difficult lighting situations. Because thermal cameras visualize thermal radiation, they are not subject to the same limitations as RGB cameras. However, because RGB and thermal imaging differ significantly in appearance, common, state-of-the-art feature descriptors are unsuitable for intermodal feature matching between these imaging modalities. As a consequence, visual maps created with an RGB camera can currently not be used for localization using a thermal camera. In this paper, we introduce the Semantic Deep Intermodal Feature Transfer (Se-DIFT), an approach for transferring image feature descriptors from the visual to the thermal spectrum and vice versa. For this purpose, we predict potential feature appearance in varying imaging modalities using a deep convolutional encoder-decoder architecture in combination with a global feature vector. Since the representation of a thermal image is not only affected by features which can be extracted from an RGB image, we introduce the global feature vector which augments the auto encoder's coding. The global feature vector contains additional information about the thermal history of a scene which is automatically extracted from external data sources. By augmenting the encoder's coding, we decrease the L1 error of the prediction by more than 7% compared to the prediction of a traditional U-Net architecture. To evaluate our approach, we match image feature descriptors detected in RGB and thermal images using Se-DIFT. Subsequently, we make a competitive comparison on the intermodal transferability of SIFT, SURF, and ORB features using our approach.",
author = "Kleinschmidt, {Sebastian P.} and Bernardo Wagner",
note = "DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.",
year = "2019",
month = jul,
day = "26",
doi = "https://doi.org/10.48550/arXiv.1907.11436",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Semantic Deep Intermodal Feature Transfer

T2 - Transferring Feature Descriptors Between Imaging Modalities

AU - Kleinschmidt, Sebastian P.

AU - Wagner, Bernardo

N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.

PY - 2019/7/26

Y1 - 2019/7/26

N2 - Under difficult environmental conditions, the view of RGB cameras may be restricted by fog, dust or difficult lighting situations. Because thermal cameras visualize thermal radiation, they are not subject to the same limitations as RGB cameras. However, because RGB and thermal imaging differ significantly in appearance, common, state-of-the-art feature descriptors are unsuitable for intermodal feature matching between these imaging modalities. As a consequence, visual maps created with an RGB camera can currently not be used for localization using a thermal camera. In this paper, we introduce the Semantic Deep Intermodal Feature Transfer (Se-DIFT), an approach for transferring image feature descriptors from the visual to the thermal spectrum and vice versa. For this purpose, we predict potential feature appearance in varying imaging modalities using a deep convolutional encoder-decoder architecture in combination with a global feature vector. Since the representation of a thermal image is not only affected by features which can be extracted from an RGB image, we introduce the global feature vector which augments the auto encoder's coding. The global feature vector contains additional information about the thermal history of a scene which is automatically extracted from external data sources. By augmenting the encoder's coding, we decrease the L1 error of the prediction by more than 7% compared to the prediction of a traditional U-Net architecture. To evaluate our approach, we match image feature descriptors detected in RGB and thermal images using Se-DIFT. Subsequently, we make a competitive comparison on the intermodal transferability of SIFT, SURF, and ORB features using our approach.

AB - Under difficult environmental conditions, the view of RGB cameras may be restricted by fog, dust or difficult lighting situations. Because thermal cameras visualize thermal radiation, they are not subject to the same limitations as RGB cameras. However, because RGB and thermal imaging differ significantly in appearance, common, state-of-the-art feature descriptors are unsuitable for intermodal feature matching between these imaging modalities. As a consequence, visual maps created with an RGB camera can currently not be used for localization using a thermal camera. In this paper, we introduce the Semantic Deep Intermodal Feature Transfer (Se-DIFT), an approach for transferring image feature descriptors from the visual to the thermal spectrum and vice versa. For this purpose, we predict potential feature appearance in varying imaging modalities using a deep convolutional encoder-decoder architecture in combination with a global feature vector. Since the representation of a thermal image is not only affected by features which can be extracted from an RGB image, we introduce the global feature vector which augments the auto encoder's coding. The global feature vector contains additional information about the thermal history of a scene which is automatically extracted from external data sources. By augmenting the encoder's coding, we decrease the L1 error of the prediction by more than 7% compared to the prediction of a traditional U-Net architecture. To evaluate our approach, we match image feature descriptors detected in RGB and thermal images using Se-DIFT. Subsequently, we make a competitive comparison on the intermodal transferability of SIFT, SURF, and ORB features using our approach.

U2 - https://doi.org/10.48550/arXiv.1907.11436

DO - https://doi.org/10.48550/arXiv.1907.11436

M3 - Preprint

BT - Semantic Deep Intermodal Feature Transfer

ER -

By the same author(s)