Loading [MathJax]/extensions/tex2jax.js

Selbstoptimierende Reihenfolgebildung in der Fertigung

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Berend Denkena
  • Marc André Dittrich
  • Silas Fohlmeister

Details

Translated title of the contributionIntelligent order sequencing in manufacturing
Original languageGerman
Pages (from-to)212-216
Number of pages5
JournalWT Werkstattstechnik
Volume111
Issue number4
Publication statusPublished - 2021

Abstract

Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.

ASJC Scopus subject areas

Cite this

Selbstoptimierende Reihenfolgebildung in der Fertigung. / Denkena, Berend; Dittrich, Marc André; Fohlmeister, Silas.
In: WT Werkstattstechnik, Vol. 111, No. 4, 2021, p. 212-216.

Research output: Contribution to journalArticleResearchpeer review

Denkena, B, Dittrich, MA & Fohlmeister, S 2021, 'Selbstoptimierende Reihenfolgebildung in der Fertigung', WT Werkstattstechnik, vol. 111, no. 4, pp. 212-216.
Denkena, B., Dittrich, M. A., & Fohlmeister, S. (2021). Selbstoptimierende Reihenfolgebildung in der Fertigung. WT Werkstattstechnik, 111(4), 212-216.
Denkena B, Dittrich MA, Fohlmeister S. Selbstoptimierende Reihenfolgebildung in der Fertigung. WT Werkstattstechnik. 2021;111(4):212-216.
Denkena, Berend ; Dittrich, Marc André ; Fohlmeister, Silas. / Selbstoptimierende Reihenfolgebildung in der Fertigung. In: WT Werkstattstechnik. 2021 ; Vol. 111, No. 4. pp. 212-216.
Download
@article{8d4082275daf4504b7a476bda033970b,
title = "Selbstoptimierende Reihenfolgebildung in der Fertigung",
abstract = "Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.",
author = "Berend Denkena and Dittrich, {Marc Andr{\'e}} and Silas Fohlmeister",
note = "Funding information: Die Autoren danken der Deutschen Forschungsgesellschaft (DFG) f{\"u}r die F{\"o}rderung des Projekts DE 447/181–1 „Selbstoptimierende dezentrale Fertigungssteuerung“.",
year = "2021",
language = "Deutsch",
volume = "111",
pages = "212--216",
number = "4",

}

Download

TY - JOUR

T1 - Selbstoptimierende Reihenfolgebildung in der Fertigung

AU - Denkena, Berend

AU - Dittrich, Marc André

AU - Fohlmeister, Silas

N1 - Funding information: Die Autoren danken der Deutschen Forschungsgesellschaft (DFG) für die Förderung des Projekts DE 447/181–1 „Selbstoptimierende dezentrale Fertigungssteuerung“.

PY - 2021

Y1 - 2021

N2 - Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.

AB - Conventional approaches for order sequencing are usually put into practice by rule-based heuristics, requiring manual adjustments if changes to the production system occur. This article presents an approach for decentralized sequencing using deep q-learning. By considering different production key figures for evaluation, the sequencing can be adapted automatically to changes of the production system, thus achieving a reduction of the cycle time.

UR - http://www.scopus.com/inward/record.url?scp=85108259972&partnerID=8YFLogxK

M3 - Artikel

AN - SCOPUS:85108259972

VL - 111

SP - 212

EP - 216

JO - WT Werkstattstechnik

JF - WT Werkstattstechnik

IS - 4

ER -