Details
Original language | English |
---|---|
Pages (from-to) | 4268-4273 |
Number of pages | 6 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 533 |
Issue number | 4 |
Publication status | Published - 5 Aug 2024 |
Abstract
The Sculptor Galaxy (NGC 253), located in the Southern Hemisphere, far off the Galactic Plane, has a relatively high star-formation rate of about 7 M☉ yr−1 and hosts a young and bright stellar population, including several super star clusters and supernova remnants. It is also the first galaxy, apart from the Milky Way Galaxy to be associated with two giant magnetar flares. As such, it is a potential host of pulsars and/or fast radio bursts in the nearby Universe. The instantaneous sensitivity and multibeam sky coverage offered by MeerKAT therefore make it a favourable target. We searched for pulsars, radio-emitting magnetars, and fast radio bursts in NGC 253 as part of the TRAPUM large survey project with MeerKAT. We did not find any pulsars during a 4 h observation, and derive a flux density limit of 4.4 μJy at 1400 MHz, limiting the pseudo-luminosity of the brightest putative pulsar in this galaxy to 54 Jy kpc2. Assuming universality of pulsar populations between galaxies, we estimate that detecting a pulsar as bright as this limit requires NGC 253 to contain a pulsar population of ∼>20 000. We also did not detect any single pulses, and our single pulse search flux density limit is 62 mJy at 1284 MHz. Our search is sensitive enough to have detected any fast radio bursts and radio emission similar to the brighter pulses seen from the magnetar SGR J1935+2154 if they had occurred during our observation.
Keywords
- galaxies: individual: NGC 253, Galaxy: general, pulsars: general, radio continuum: transients, stars: neutron
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Astronomy and Astrophysics
- Earth and Planetary Sciences(all)
- Space and Planetary Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Monthly Notices of the Royal Astronomical Society, Vol. 533, No. 4, 05.08.2024, p. 4268-4273.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Searching for pulsars, magnetars, and fast radio bursts in the sculptor galaxy using MeerKAT
AU - Hurter, H.
AU - Venter, C.
AU - Levin, L.
AU - Stappers, B. W.
AU - Barr, E. D.
AU - Breton, R. P.
AU - Buchner, S.
AU - Carli, E.
AU - Kramer, M.
AU - Padmanabh, P. V.
AU - Possenti, A.
AU - Prayag, V.
AU - Turner, J. D.
N1 - Publisher Copyright: © 2024 The Author(s).
PY - 2024/8/5
Y1 - 2024/8/5
N2 - The Sculptor Galaxy (NGC 253), located in the Southern Hemisphere, far off the Galactic Plane, has a relatively high star-formation rate of about 7 M☉ yr−1 and hosts a young and bright stellar population, including several super star clusters and supernova remnants. It is also the first galaxy, apart from the Milky Way Galaxy to be associated with two giant magnetar flares. As such, it is a potential host of pulsars and/or fast radio bursts in the nearby Universe. The instantaneous sensitivity and multibeam sky coverage offered by MeerKAT therefore make it a favourable target. We searched for pulsars, radio-emitting magnetars, and fast radio bursts in NGC 253 as part of the TRAPUM large survey project with MeerKAT. We did not find any pulsars during a 4 h observation, and derive a flux density limit of 4.4 μJy at 1400 MHz, limiting the pseudo-luminosity of the brightest putative pulsar in this galaxy to 54 Jy kpc2. Assuming universality of pulsar populations between galaxies, we estimate that detecting a pulsar as bright as this limit requires NGC 253 to contain a pulsar population of ∼>20 000. We also did not detect any single pulses, and our single pulse search flux density limit is 62 mJy at 1284 MHz. Our search is sensitive enough to have detected any fast radio bursts and radio emission similar to the brighter pulses seen from the magnetar SGR J1935+2154 if they had occurred during our observation.
AB - The Sculptor Galaxy (NGC 253), located in the Southern Hemisphere, far off the Galactic Plane, has a relatively high star-formation rate of about 7 M☉ yr−1 and hosts a young and bright stellar population, including several super star clusters and supernova remnants. It is also the first galaxy, apart from the Milky Way Galaxy to be associated with two giant magnetar flares. As such, it is a potential host of pulsars and/or fast radio bursts in the nearby Universe. The instantaneous sensitivity and multibeam sky coverage offered by MeerKAT therefore make it a favourable target. We searched for pulsars, radio-emitting magnetars, and fast radio bursts in NGC 253 as part of the TRAPUM large survey project with MeerKAT. We did not find any pulsars during a 4 h observation, and derive a flux density limit of 4.4 μJy at 1400 MHz, limiting the pseudo-luminosity of the brightest putative pulsar in this galaxy to 54 Jy kpc2. Assuming universality of pulsar populations between galaxies, we estimate that detecting a pulsar as bright as this limit requires NGC 253 to contain a pulsar population of ∼>20 000. We also did not detect any single pulses, and our single pulse search flux density limit is 62 mJy at 1284 MHz. Our search is sensitive enough to have detected any fast radio bursts and radio emission similar to the brighter pulses seen from the magnetar SGR J1935+2154 if they had occurred during our observation.
KW - galaxies: individual: NGC 253
KW - Galaxy: general
KW - pulsars: general
KW - radio continuum: transients
KW - stars: neutron
UR - http://www.scopus.com/inward/record.url?scp=85204037635&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2408.01217
DO - 10.48550/arXiv.2408.01217
M3 - Article
AN - SCOPUS:85204037635
VL - 533
SP - 4268
EP - 4273
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
SN - 0035-8711
IS - 4
ER -