Details
Original language | English |
---|---|
Article number | 132 |
Number of pages | 12 |
Journal | Frontiers in Bioengineering and Biotechnology |
Volume | 7 |
Publication status | Published - 5 Jun 2019 |
Abstract
This article gives an overview of legal and procedural uncertainties regarding genome edited organisms and possible ways forward for European GMO policy. After a recent judgment by the European Court of Justice (ECJ judgment of 25 July 2018, C-528/16), organisms obtained by techniques of genome editing are GMOs and subject to the same obligations as transgenic organisms. Uncertainties emerge if genome edited organisms cannot be distinguished from organisms bred by conventional techniques, such as crossing or random mutagenesis. In this case, identical organisms can be subject to either GMO law or exempt from regulation because of the use of a technique that cannot be identified. Regulatory agencies might not be able to enforce GMO law for such cases in the long term. As other jurisdictions do not regulate such organisms as GMOs, accidental imports might occur and undermine European GMO regulation. In the near future, the EU Commission as well as European and national regulatory agencies will decide on how to apply the updated interpretation of the law. In order to mitigate current legal and procedural uncertainties, a first step forward lies in updating all guidance documents to specifically address genome editing specifically address genome editing, including a solution for providing a unique identifier. In part, the authorization procedure for GMO release can be tailored to different types of organisms by making use of existing flexibilities in GMO law. However, only an amendment to the regulations that govern the process of authorization for GMO release can substantially lower the burden for innovators. In a second step, any way forward has to aim at amending, supplementing or replacing the European GMO Directive (2001/18/EC). The policy options presented in this article presuppose political readiness for reform. This may not be realistic in the current political situation. However, if the problems of current GMO law are just ignored, European competitiveness and research in green biotechnology will suffer.
Keywords
- CJEU C-528/16, CRISPR/Cas, Directed mutagenesis, Directive 2001/18/EC, Future policy, Genome editing, GMO regulation, New genetic modification techniques (nGM)
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biotechnology
- Chemical Engineering(all)
- Bioengineering
- Medicine(all)
- Histology
- Engineering(all)
- Biomedical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Frontiers in Bioengineering and Biotechnology, Vol. 7, 132, 05.06.2019.
Research output: Contribution to journal › Review article › Research › peer review
}
TY - JOUR
T1 - Roads Forward for European GMO Policy—Uncertainties in Wake of ECJ Judgment Have to be Mitigated by Regulatory Reform
AU - Wasmer, Martin
N1 - Funding Information: This work is part of the project ELSA-GEA, funded by the German Federal Ministry of Education and Research (BMBF Grant No. 01GP1613D). The publication of this article was funded by the Open Access fund of Leibniz University Hannover. No other direct funding was received for the present work. Many thanks to Brigitte Voigt (Uni Passau) and to the reviewers for discussion and substantial improvement of this work. Special thanks to Regula Hauser-Scheel for having been a patron to my work for several years and allowed me to travel to Colorado for a fantastic few weeks of sabbatical/writing period.
PY - 2019/6/5
Y1 - 2019/6/5
N2 - This article gives an overview of legal and procedural uncertainties regarding genome edited organisms and possible ways forward for European GMO policy. After a recent judgment by the European Court of Justice (ECJ judgment of 25 July 2018, C-528/16), organisms obtained by techniques of genome editing are GMOs and subject to the same obligations as transgenic organisms. Uncertainties emerge if genome edited organisms cannot be distinguished from organisms bred by conventional techniques, such as crossing or random mutagenesis. In this case, identical organisms can be subject to either GMO law or exempt from regulation because of the use of a technique that cannot be identified. Regulatory agencies might not be able to enforce GMO law for such cases in the long term. As other jurisdictions do not regulate such organisms as GMOs, accidental imports might occur and undermine European GMO regulation. In the near future, the EU Commission as well as European and national regulatory agencies will decide on how to apply the updated interpretation of the law. In order to mitigate current legal and procedural uncertainties, a first step forward lies in updating all guidance documents to specifically address genome editing specifically address genome editing, including a solution for providing a unique identifier. In part, the authorization procedure for GMO release can be tailored to different types of organisms by making use of existing flexibilities in GMO law. However, only an amendment to the regulations that govern the process of authorization for GMO release can substantially lower the burden for innovators. In a second step, any way forward has to aim at amending, supplementing or replacing the European GMO Directive (2001/18/EC). The policy options presented in this article presuppose political readiness for reform. This may not be realistic in the current political situation. However, if the problems of current GMO law are just ignored, European competitiveness and research in green biotechnology will suffer.
AB - This article gives an overview of legal and procedural uncertainties regarding genome edited organisms and possible ways forward for European GMO policy. After a recent judgment by the European Court of Justice (ECJ judgment of 25 July 2018, C-528/16), organisms obtained by techniques of genome editing are GMOs and subject to the same obligations as transgenic organisms. Uncertainties emerge if genome edited organisms cannot be distinguished from organisms bred by conventional techniques, such as crossing or random mutagenesis. In this case, identical organisms can be subject to either GMO law or exempt from regulation because of the use of a technique that cannot be identified. Regulatory agencies might not be able to enforce GMO law for such cases in the long term. As other jurisdictions do not regulate such organisms as GMOs, accidental imports might occur and undermine European GMO regulation. In the near future, the EU Commission as well as European and national regulatory agencies will decide on how to apply the updated interpretation of the law. In order to mitigate current legal and procedural uncertainties, a first step forward lies in updating all guidance documents to specifically address genome editing specifically address genome editing, including a solution for providing a unique identifier. In part, the authorization procedure for GMO release can be tailored to different types of organisms by making use of existing flexibilities in GMO law. However, only an amendment to the regulations that govern the process of authorization for GMO release can substantially lower the burden for innovators. In a second step, any way forward has to aim at amending, supplementing or replacing the European GMO Directive (2001/18/EC). The policy options presented in this article presuppose political readiness for reform. This may not be realistic in the current political situation. However, if the problems of current GMO law are just ignored, European competitiveness and research in green biotechnology will suffer.
KW - CJEU C-528/16
KW - CRISPR/Cas
KW - Directed mutagenesis
KW - Directive 2001/18/EC
KW - Future policy
KW - Genome editing
KW - GMO regulation
KW - New genetic modification techniques (nGM)
UR - http://www.scopus.com/inward/record.url?scp=85068785658&partnerID=8YFLogxK
U2 - 10.3389/fbioe.2019.00132
DO - 10.3389/fbioe.2019.00132
M3 - Review article
AN - SCOPUS:85068785658
VL - 7
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
SN - 2296-4185
M1 - 132
ER -