Details
Original language | English |
---|---|
Article number | G4016003 |
Number of pages | 15 |
Journal | ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering |
Volume | 3 |
Issue number | 2 |
Early online date | 8 Apr 2016 |
Publication status | Published - Jun 2017 |
Abstract
Natural hazards have the capability to affect technological installations, triggering multiple failures and putting the population and the surrounding environment at risk. Global climate change introduces an additional and not negligible element of uncertainty to the vulnerability quantification, threatening to intensify (both in terms of frequency and severity) the occurrence of extreme climate events. Sea level extremes and extreme coastal high waters are expected to change in the future as a result of both changes in atmospheric storminess and mean sea level rise, as well as extreme precipitation events. These trends clearly suggest a parallel increase in the risks affecting technological installations and the subsequent need for mitigation measures to enhance the reliability of existing systems and to improve the design standards of new facilities. In spite of this situation, the scientific research in this field lacks robust and reliable tools for this kind of assessment, often relying on the adoption of oversimplified models or strong assumptions, which affect the credibility of the results. The main purpose of this study is to provide a novel and general model for the evaluation of the risk of exposure of spent nuclear fuel stored in a facility subject to flood hazard, investigating the potential and limitations of Bayesian networks (BNs) in this field. The network aims to model the interaction between extreme weather conditions and the technological installation, as well as the propagation of failures within the system itself, taking into account the dependencies among the different components and the occurrence of human error. A real-world application concerning the nuclear power station of Sizewell B in East Anglia, in the United Kingdom, is extensively described, together with the models and data set used. Results are presented for three different time scenarios in which climate change projections have been adopted to estimate future risks.
Keywords
- Bayesian networks (BNs), Climate change, Natech accident, Nuclear safety, Reliability, Spent fuel
ASJC Scopus subject areas
- Engineering(all)
- Civil and Structural Engineering
- Engineering(all)
- Building and Construction
- Engineering(all)
- Safety, Risk, Reliability and Quality
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, Vol. 3, No. 2, G4016003, 06.2017.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Risk Assessment of Spent Nuclear Fuel Facilities Considering Climate Change
AU - Tolo, Silvia
AU - Patelli, Edoardo
AU - Beer, Michael
N1 - Publisher Copyright: © 2016 American Society of Civil Engineers. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2017/6
Y1 - 2017/6
N2 - Natural hazards have the capability to affect technological installations, triggering multiple failures and putting the population and the surrounding environment at risk. Global climate change introduces an additional and not negligible element of uncertainty to the vulnerability quantification, threatening to intensify (both in terms of frequency and severity) the occurrence of extreme climate events. Sea level extremes and extreme coastal high waters are expected to change in the future as a result of both changes in atmospheric storminess and mean sea level rise, as well as extreme precipitation events. These trends clearly suggest a parallel increase in the risks affecting technological installations and the subsequent need for mitigation measures to enhance the reliability of existing systems and to improve the design standards of new facilities. In spite of this situation, the scientific research in this field lacks robust and reliable tools for this kind of assessment, often relying on the adoption of oversimplified models or strong assumptions, which affect the credibility of the results. The main purpose of this study is to provide a novel and general model for the evaluation of the risk of exposure of spent nuclear fuel stored in a facility subject to flood hazard, investigating the potential and limitations of Bayesian networks (BNs) in this field. The network aims to model the interaction between extreme weather conditions and the technological installation, as well as the propagation of failures within the system itself, taking into account the dependencies among the different components and the occurrence of human error. A real-world application concerning the nuclear power station of Sizewell B in East Anglia, in the United Kingdom, is extensively described, together with the models and data set used. Results are presented for three different time scenarios in which climate change projections have been adopted to estimate future risks.
AB - Natural hazards have the capability to affect technological installations, triggering multiple failures and putting the population and the surrounding environment at risk. Global climate change introduces an additional and not negligible element of uncertainty to the vulnerability quantification, threatening to intensify (both in terms of frequency and severity) the occurrence of extreme climate events. Sea level extremes and extreme coastal high waters are expected to change in the future as a result of both changes in atmospheric storminess and mean sea level rise, as well as extreme precipitation events. These trends clearly suggest a parallel increase in the risks affecting technological installations and the subsequent need for mitigation measures to enhance the reliability of existing systems and to improve the design standards of new facilities. In spite of this situation, the scientific research in this field lacks robust and reliable tools for this kind of assessment, often relying on the adoption of oversimplified models or strong assumptions, which affect the credibility of the results. The main purpose of this study is to provide a novel and general model for the evaluation of the risk of exposure of spent nuclear fuel stored in a facility subject to flood hazard, investigating the potential and limitations of Bayesian networks (BNs) in this field. The network aims to model the interaction between extreme weather conditions and the technological installation, as well as the propagation of failures within the system itself, taking into account the dependencies among the different components and the occurrence of human error. A real-world application concerning the nuclear power station of Sizewell B in East Anglia, in the United Kingdom, is extensively described, together with the models and data set used. Results are presented for three different time scenarios in which climate change projections have been adopted to estimate future risks.
KW - Bayesian networks (BNs)
KW - Climate change
KW - Natech accident
KW - Nuclear safety
KW - Reliability
KW - Spent fuel
UR - http://www.scopus.com/inward/record.url?scp=85042780588&partnerID=8YFLogxK
U2 - 10.1061/AJRUA6.0000874
DO - 10.1061/AJRUA6.0000874
M3 - Article
AN - SCOPUS:85042780588
VL - 3
JO - ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
JF - ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
SN - 2376-7642
IS - 2
M1 - G4016003
ER -