Details
Original language | English |
---|---|
Article number | 124501 |
Journal | Journal of the Electrochemical Society |
Volume | 171 |
Issue number | 12 |
Early online date | 9 Dec 2024 |
Publication status | E-pub ahead of print - 9 Dec 2024 |
Abstract
In proton exchange membrane water electrolysis (PEMWE) systems, voltage cycles dropping below a threshold are associated with reversible performance improvements, which remain poorly understood despite being documented in literature. The distinction between reversible and irreversible performance changes is crucial for accurate degradation assessments. One approach in literature to explain this behavior is the oxidation and reduction of iridium. Iridium-based electrocatalyst activity and stability in PEMWE hinge on their oxidation state, influenced by the applied voltage. Yet, full-cell PEMWE dynamic performance remains underexplored, with a focus typically on stability rather than activity. This study systematically investigates reversible performance behavior in PEMWE cells using Ir-black as an anodic catalyst. Results reveal a recovery effect when the low voltage level drops below 1.5 V, with further enhancements observed as the voltage decreases, even with a short holding time of 0.1 s. This reversible recovery is primarily driven by improved anode reaction kinetics, likely due to changing iridium oxidation states, and is supported by alignment between the experimental data and a dynamic model that links iridium oxidation/reduction processes to performance metrics. This model allows distinguishing between reversible and irreversible effects and enables the derivation of optimized operation schemes utilizing the recovery effect.
Keywords
- Electrode Kinetics, PEM Water Electrolysis, Reversible Degradation
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Physics and Astronomy(all)
- Condensed Matter Physics
- Materials Science(all)
- Surfaces, Coatings and Films
- Chemistry(all)
- Electrochemistry
- Materials Science(all)
- Materials Chemistry
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of the Electrochemical Society, Vol. 171, No. 12, 124501, 09.12.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Reversible Degradation Phenomenon in PEMWE Cells
T2 - An Experimental and Modeling Study
AU - Krenz, Tobias
AU - Rex, Alexander
AU - Helmers, Lennard
AU - Trinke, Patrick
AU - Bensmann, Boris
AU - Hanke-Rauschenbach, Richard
N1 - Publisher Copyright: © 2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
PY - 2024/12/9
Y1 - 2024/12/9
N2 - In proton exchange membrane water electrolysis (PEMWE) systems, voltage cycles dropping below a threshold are associated with reversible performance improvements, which remain poorly understood despite being documented in literature. The distinction between reversible and irreversible performance changes is crucial for accurate degradation assessments. One approach in literature to explain this behavior is the oxidation and reduction of iridium. Iridium-based electrocatalyst activity and stability in PEMWE hinge on their oxidation state, influenced by the applied voltage. Yet, full-cell PEMWE dynamic performance remains underexplored, with a focus typically on stability rather than activity. This study systematically investigates reversible performance behavior in PEMWE cells using Ir-black as an anodic catalyst. Results reveal a recovery effect when the low voltage level drops below 1.5 V, with further enhancements observed as the voltage decreases, even with a short holding time of 0.1 s. This reversible recovery is primarily driven by improved anode reaction kinetics, likely due to changing iridium oxidation states, and is supported by alignment between the experimental data and a dynamic model that links iridium oxidation/reduction processes to performance metrics. This model allows distinguishing between reversible and irreversible effects and enables the derivation of optimized operation schemes utilizing the recovery effect.
AB - In proton exchange membrane water electrolysis (PEMWE) systems, voltage cycles dropping below a threshold are associated with reversible performance improvements, which remain poorly understood despite being documented in literature. The distinction between reversible and irreversible performance changes is crucial for accurate degradation assessments. One approach in literature to explain this behavior is the oxidation and reduction of iridium. Iridium-based electrocatalyst activity and stability in PEMWE hinge on their oxidation state, influenced by the applied voltage. Yet, full-cell PEMWE dynamic performance remains underexplored, with a focus typically on stability rather than activity. This study systematically investigates reversible performance behavior in PEMWE cells using Ir-black as an anodic catalyst. Results reveal a recovery effect when the low voltage level drops below 1.5 V, with further enhancements observed as the voltage decreases, even with a short holding time of 0.1 s. This reversible recovery is primarily driven by improved anode reaction kinetics, likely due to changing iridium oxidation states, and is supported by alignment between the experimental data and a dynamic model that links iridium oxidation/reduction processes to performance metrics. This model allows distinguishing between reversible and irreversible effects and enables the derivation of optimized operation schemes utilizing the recovery effect.
KW - Electrode Kinetics
KW - PEM Water Electrolysis
KW - Reversible Degradation
UR - http://www.scopus.com/inward/record.url?scp=85212201771&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/ad96e4
DO - 10.1149/1945-7111/ad96e4
M3 - Article
AN - SCOPUS:85212201771
VL - 171
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
SN - 0013-4651
IS - 12
M1 - 124501
ER -