Details
Original language | English |
---|---|
Pages (from-to) | 894-904 |
Number of pages | 11 |
Journal | Journal of Plant Nutrition and Soil Science |
Volume | 181 |
Issue number | 6 |
Early online date | 27 Sept 2018 |
Publication status | Published - 3 Dec 2018 |
Abstract
Sonication is widely used for disruption of suspended soil aggregates. Calorimetric calibration allows for determining sonication power and applied energy as a measure for aggregate disrupting forces. Yet other properties of sonication devices (e.g., oscillation frequency and amplitude, sonotrode diameter) as well as procedure details (soil-to-water ratio, size, shape, and volume of used containers) may influence the extent of aggregate disruption in addition to the applied energy. In this study, we tested potential bias in aggregate disruption when different devices or procedures are used in laboratory routines. In nine laboratories, three reference soil samples were sonicated at 30 J mL−1 and 400 J mL−1. Aggregate disruption was estimated based on particle size distribution before and after sonication. Size distribution was obtained by standardized submerged sieving for particle size classes 2000–200 and 200–63 µm, and by dynamic imaging for particles < 63 µm. Despite differences in sonication devices and protocols used by the participants, only 16 in 216 tests of samples of the size fractions 2000–200 and 200–63 µm were identified as outliers. For the size fraction < 63 µm, fewer outliers were detected (8 in 324 tests). Four out of nine laboratories produced more than two outliers. In these laboratories, sonication devices differed from the others regarding oscillation frequencies (24 or 30 kHz compared to 20 kHz), sonotrode diameters (10 and 14 mm compared to 13 mm), and sonication power (16 W compared to > 45 W). Thus, these sonication device properties need to be listed when reporting on sonication-based soil aggregate disruption. The overall small differences in the degree of disruption of soil aggregates between different laboratories demonstrate that sonication with the energies tested (30 and 400 J mL−1) provides replicable results despite the variations regarding procedures and equipment.
Keywords
- disaggregation, particle size fractions, reproducibility, round-robin test, ultrasound
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Soil Science
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Plant Nutrition and Soil Science, Vol. 181, No. 6, 03.12.2018, p. 894-904.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Replicability of aggregate disruption by sonication
T2 - An inter-laboratory test using three different soils from Germany
AU - Graf-Rosenfellner, Markus
AU - Kayser, Gilles
AU - Guggenberger, Georg
AU - Kaiser, Klaus
AU - Büks, Frederik
AU - Kaiser, Michael
AU - Mueller, Carsten W.
AU - Schrumpf, Marion
AU - Rennert, Thilo
AU - Welp, Gerhard
AU - Lang, Friederike
N1 - © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/12/3
Y1 - 2018/12/3
N2 - Sonication is widely used for disruption of suspended soil aggregates. Calorimetric calibration allows for determining sonication power and applied energy as a measure for aggregate disrupting forces. Yet other properties of sonication devices (e.g., oscillation frequency and amplitude, sonotrode diameter) as well as procedure details (soil-to-water ratio, size, shape, and volume of used containers) may influence the extent of aggregate disruption in addition to the applied energy. In this study, we tested potential bias in aggregate disruption when different devices or procedures are used in laboratory routines. In nine laboratories, three reference soil samples were sonicated at 30 J mL−1 and 400 J mL−1. Aggregate disruption was estimated based on particle size distribution before and after sonication. Size distribution was obtained by standardized submerged sieving for particle size classes 2000–200 and 200–63 µm, and by dynamic imaging for particles < 63 µm. Despite differences in sonication devices and protocols used by the participants, only 16 in 216 tests of samples of the size fractions 2000–200 and 200–63 µm were identified as outliers. For the size fraction < 63 µm, fewer outliers were detected (8 in 324 tests). Four out of nine laboratories produced more than two outliers. In these laboratories, sonication devices differed from the others regarding oscillation frequencies (24 or 30 kHz compared to 20 kHz), sonotrode diameters (10 and 14 mm compared to 13 mm), and sonication power (16 W compared to > 45 W). Thus, these sonication device properties need to be listed when reporting on sonication-based soil aggregate disruption. The overall small differences in the degree of disruption of soil aggregates between different laboratories demonstrate that sonication with the energies tested (30 and 400 J mL−1) provides replicable results despite the variations regarding procedures and equipment.
AB - Sonication is widely used for disruption of suspended soil aggregates. Calorimetric calibration allows for determining sonication power and applied energy as a measure for aggregate disrupting forces. Yet other properties of sonication devices (e.g., oscillation frequency and amplitude, sonotrode diameter) as well as procedure details (soil-to-water ratio, size, shape, and volume of used containers) may influence the extent of aggregate disruption in addition to the applied energy. In this study, we tested potential bias in aggregate disruption when different devices or procedures are used in laboratory routines. In nine laboratories, three reference soil samples were sonicated at 30 J mL−1 and 400 J mL−1. Aggregate disruption was estimated based on particle size distribution before and after sonication. Size distribution was obtained by standardized submerged sieving for particle size classes 2000–200 and 200–63 µm, and by dynamic imaging for particles < 63 µm. Despite differences in sonication devices and protocols used by the participants, only 16 in 216 tests of samples of the size fractions 2000–200 and 200–63 µm were identified as outliers. For the size fraction < 63 µm, fewer outliers were detected (8 in 324 tests). Four out of nine laboratories produced more than two outliers. In these laboratories, sonication devices differed from the others regarding oscillation frequencies (24 or 30 kHz compared to 20 kHz), sonotrode diameters (10 and 14 mm compared to 13 mm), and sonication power (16 W compared to > 45 W). Thus, these sonication device properties need to be listed when reporting on sonication-based soil aggregate disruption. The overall small differences in the degree of disruption of soil aggregates between different laboratories demonstrate that sonication with the energies tested (30 and 400 J mL−1) provides replicable results despite the variations regarding procedures and equipment.
KW - disaggregation
KW - particle size fractions
KW - reproducibility
KW - round-robin test
KW - ultrasound
UR - http://www.scopus.com/inward/record.url?scp=85053874846&partnerID=8YFLogxK
U2 - 10.1002/jpln.201800152
DO - 10.1002/jpln.201800152
M3 - Article
AN - SCOPUS:85053874846
VL - 181
SP - 894
EP - 904
JO - Journal of Plant Nutrition and Soil Science
JF - Journal of Plant Nutrition and Soil Science
SN - 1436-8730
IS - 6
ER -