Details
Original language | English |
---|---|
Article number | 96 |
Number of pages | 21 |
Journal | Zeitschrift fur Angewandte Mathematik und Physik |
Volume | 72 |
Issue number | 3 |
Publication status | Published - 30 Apr 2021 |
Abstract
Keywords
- math.AP, 35B44 (primary), 35K55, 92C17 (secondary), Logistic source, Finite-time blow-up, Nonlinear diffusion, Chemotaxis
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
- Mathematics(all)
- Applied Mathematics
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Zeitschrift fur Angewandte Mathematik und Physik, Vol. 72, No. 3, 96 , 30.04.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems
AU - Black, Tobias
AU - Fuest, Mario
AU - Lankeit, Johannes
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL. The second author is partly supported by the German Academic Scholarship Foundation and by the Deutsche Forschungsgemeinschaft within the project Emergence of structures and advantages in cross-diffusion systems, project number 411007140.
PY - 2021/4/30
Y1 - 2021/4/30
N2 - We study the finite-time blow-up in two variants of the parabolic-elliptic Keller-Segel system with nonlinear diffusion and logistic source. In \(n\)-dimensional balls, we consider \begin{align*} \begin{cases} u_t = \nabla \cdot ((u+1)^{m-1}\nabla u - u\nabla v) + \lambda u - \mu u^{1+\kappa}, \\ 0 = \Delta v - \frac1{|\Omega|} \int_\Omega u + u \end{cases} \tag{JL} \end{align*} and \begin{align*} \begin{cases} u_t = \nabla \cdot ((u+1)^{m-1}\nabla u - u\nabla v) + \lambda u - \mu u^{1+\kappa}, \\ 0 = \Delta v - v + u, \end{cases}\tag{PE} \end{align*} where \(\lambda\) and \(\mu\) are given spatially radial nonnegative functions and \(m, \kappa > 0\) are given parameters subject to further conditions. In a unified treatment, we establish a bridge between previously employed methods on blow-up detection and relatively new results on pointwise upper estimates of solutions in both of the systems above and then, making use of this newly found connection, provide extended parameter ranges for \(m,\kappa\) leading to the existence of finite-time blow-up solutions in space dimensions three and above. In particular, for constant \(\lambda, \mu > 0\), we find that there are initial data which lead to blow-up in (JL) if \begin{alignat*}{2} 0 \leq \kappa &< \min\left\{\frac{1}{2}, \frac{n - 2}{n} - (m-1)_+ \right\}&&\qquad\text{if } m\in\left[\frac{2}{n},\frac{2n-2}{n}\right)\\ \text{ or }\quad 0 \leq \kappa&
AB - We study the finite-time blow-up in two variants of the parabolic-elliptic Keller-Segel system with nonlinear diffusion and logistic source. In \(n\)-dimensional balls, we consider \begin{align*} \begin{cases} u_t = \nabla \cdot ((u+1)^{m-1}\nabla u - u\nabla v) + \lambda u - \mu u^{1+\kappa}, \\ 0 = \Delta v - \frac1{|\Omega|} \int_\Omega u + u \end{cases} \tag{JL} \end{align*} and \begin{align*} \begin{cases} u_t = \nabla \cdot ((u+1)^{m-1}\nabla u - u\nabla v) + \lambda u - \mu u^{1+\kappa}, \\ 0 = \Delta v - v + u, \end{cases}\tag{PE} \end{align*} where \(\lambda\) and \(\mu\) are given spatially radial nonnegative functions and \(m, \kappa > 0\) are given parameters subject to further conditions. In a unified treatment, we establish a bridge between previously employed methods on blow-up detection and relatively new results on pointwise upper estimates of solutions in both of the systems above and then, making use of this newly found connection, provide extended parameter ranges for \(m,\kappa\) leading to the existence of finite-time blow-up solutions in space dimensions three and above. In particular, for constant \(\lambda, \mu > 0\), we find that there are initial data which lead to blow-up in (JL) if \begin{alignat*}{2} 0 \leq \kappa &< \min\left\{\frac{1}{2}, \frac{n - 2}{n} - (m-1)_+ \right\}&&\qquad\text{if } m\in\left[\frac{2}{n},\frac{2n-2}{n}\right)\\ \text{ or }\quad 0 \leq \kappa&
KW - math.AP
KW - 35B44 (primary), 35K55, 92C17 (secondary)
KW - Logistic source
KW - Finite-time blow-up
KW - Nonlinear diffusion
KW - Chemotaxis
UR - http://www.scopus.com/inward/record.url?scp=85105199302&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2005.12089
DO - 10.48550/arXiv.2005.12089
M3 - Article
VL - 72
JO - Zeitschrift fur Angewandte Mathematik und Physik
JF - Zeitschrift fur Angewandte Mathematik und Physik
SN - 0044-2275
IS - 3
M1 - 96
ER -